Related
I am new to Scala, and I am implementing a TreeMap with a multidimensional key like this:
class dimSet (val d:Vector[Int]) extends IndexedSeq[Int] {
def apply(idx:Int) = d(idx)
def length: Int = d.length
}
…
var vals : TreeMap[dimSet, A] = TreeMap[dimSet, A]()(orddimSet)
I have this method
def appOp0(t:TreeMap[dimSet,A], t1:TreeMap[dimSet,A], op:(A,A) => A, unop : (A) => A):TreeMap[dimSet,A] = {
if (t.isEmpty) t1.map((e:Tuple2[dimSet, A]) => (e._1, unop(e._2)))
else if (t1.isEmpty) t.map((t:Tuple2[dimSet, A]) => (t._1, unop(t._2)))
else {
val h = t.head
val h1 = t1.head
if ((h._1) == (h1._1)) appOp0(t.tail, t1.tail, op, unop) + ((h._1, op(h._2, h1._2)))
else if (orddimSet.compare(h._1,h1._1) == 1) appOp0(t, t1.tail, op, unop) + ((h1._1, unop(h1._2)))
else appOp0(t.tail, t1, op, unop) + ((h._1, unop(h._2)))
}
}
But the map method on the TreeMaps (second and third lines) returns a Map, not a TreeMap
I tried on repl with a simplier example and I got this:
scala> val t = TreeMap[dimSet, Double]( (new dimSet(Vector(1,1)), 5.1), (new dimSet(Vector(1,2)), 6.3), (new dimSet(Vector(3,1)), 7.1), (new dimSet(Vector(2,2)), 8.4)) (orddimSet)
scala> val tsq = t.map[(dimSet,Double), TreeMap[dimSet,Double]]((v:Tuple2[dimSet, Double]) => ((v._1, v._2 * v._2)))
<console>:41: error: Cannot construct a collection of type scala.collection.immutable.TreeMap[dimSet,Double] with elements of type (dimSet, Double) based on a collection of type scala.collection.immutable.TreeMap[dimSet,Double].
val tsq = t.map[(dimSet,Double), TreeMap[dimSet,Double]]((v:Tuple2[dimSet, Double]) => ((v._1, v._2 * v._2)))
^
scala> val tsq = t.map((v:Tuple2[dimSet, Double]) => ((v._1, v._2 * v._2)))
tsq: scala.collection.immutable.Map[dimSet,Double] = Map((1, 1) -> 26.009999999999998, (1, 2) -> 39.69, (2, 2) -> 70.56, (3, 1) -> 50.41)
I think CanBuildFrom cannot build my TreeMap as it can do with other TreeMaps, but I couldn't find why, ¿What can I do to return a TreeMap?
Thanks
The problem probably is that there is no implicit Ordering[dimSet] available when you call map. That call requires a CanBuildFrom, which in turn requires an implicit Ordering for TreeMap keys: see in docs.
So make orddimSet implicitly available before calling map:
implicit val ev = orddimSet
if (t.isEmpty) t1.map((e:Tuple2[dimSet, A]) => (e._1, unop(e._2)))
Or you can make an Ordering[dimSet] always automatically implicitly available, if you define an implicit Ordering in dimSet's companion object:
object dimSet {
implicit val orddimSet: Ordering[dimSet] = ??? // you code here
}
I'm pretty sure what I'd like to do is probably not possible and not a good idea anyway. Nonetheless, here it is.
I would like to find a generic way of transforming any method on any class into a function that takes as arguments an instance of the class and the parameters of the method and calls the method on the instance with the specified parameters (which is basically how method calls work at a low-level: the object instance is a hidden parameter pushed by the compiler on the stack frame)
Example:
Given
class A { def foo(param1: Type1): TypeN }
I would like to have something like:
def functor[X](methodName: String): (obj: X, methodParams: Types*) => TypeN
Such that:
// Type (obj: A, param1: Type1) => TypeN
val fooFn = functor[A]("foo")
val res: TypeN = fooFn(new A, new Type1)
Which would allow something like:
def flip[A, B, C](fn: A => B => C): B => A => C = (b: B) => (a: A) => fn(a)(b)
// Type (param1: Type1) => (obj: A) => TypeN
val fooFl = flip(fooFn.curried)
List(new A, new A).map(fooFl(new Type1) _)
One example where something like that could be useful follows:
Imagine you have:
val divide = (i: Int) => Try(2/i).toOption
List(1, 0).map(i => divide(i).getOrElse(0))
but you'd like an arguably cleaner:
import OptionUtils.getOrElse
List(1, 0).map(getOrElse(0) _ compose divide)
Now, I've defined that getOrElse manually as:
object OptionUtils {
def getOrElse[A](default: A)(option: Option[A]) = option.getOrElse(default)
}
But would like to be able to do automatically define such a methods for all (or any given selection) of methods in a specified class. Ideally I'd have something like:
val optionUtils: Utils[Option] = Utils(Option, List("getOrElse", "or"))
optionUtils.getOrElse(None, 1) // = 1
optionUtils.getOrElseFl(1)(None) // = 1
Any suggestions/comments?
You can use Java relection for this (here is scala code)
Or Scala reflection:
import scala.reflect._, runtime.universe._
def functor[X: TypeTag: ClassTag, R](methodName: String)(obj: X) = {
val m = runtimeMirror(getClass.getClassLoader)
val method = typeTag[X].tpe.declaration(newTermName(methodName)).asMethod
val call = m.reflect(obj).reflectMethod(method)
(call.apply _) andThen (_.asInstanceOf[R])
}
scala> functor[Option[Int], Int]("get") _
res19: Option[Int] => (Seq[Any] => Int) = <function1>
scala> res19(Some(5))(Nil)
res20: Int = 5
I am trying to rewrite some java math classes into Scala, but am having an odd problem.
class Polynomials[#specialized T](val coefficients:List[T]) {
def +(operand:Polynomials[T]):Polynomials[T] = {
return new Polynomials[T](coefficients =
(operand.coefficients, this.coefficients).zipped.map(_ + _))
}
}
My problem may be similar to this question: How do I make a class generic for all Numeric Types?, but when I remove the #specialized I get the same error.
type mismatch; found : T required: String
The second underscore in the map function is highlighted for the error, but I don't think that is the problem.
What I want to do is have:
Polynomial(1, 2, 3) + Polynomial(2, 3, 4) return Polynomial(3, 5, 7)
And Polynomial(1, 2, 3, 5) + Polynomial(2, 3, 4) return Polynomial(3, 5, 7, 5)
For the second one I may have to pad the shorter list with zero elements in order to get this to work, but that is my goal on this function.
So, how can I get this function to compile, so I can test it?
List is not specialized, so there's not much point making the class specialized. Only Array is specialized.
class Poly[T](val coef: List[T]) {
def +(op: Poly[T])(implicit adder: (T,T) => T) =
new Poly(Poly.combine(coef, op.coef, adder))
}
object Poly {
def combine[A](a: List[A], b: List[A], f: (A,A) => A, part: List[A] = Nil): List[A] = {
a match {
case Nil => if (b.isEmpty) part.reverse else combine(b,a,f,part)
case x :: xs => b match {
case Nil => part.reverse ::: a
case y :: ys => combine(xs, ys, f, f(x,y) :: part)
}
}
}
}
Now we can
implicit val stringAdd = (s: String, t: String) => (s+t)
scala> val p = new Poly(List("red","blue"))
p: Poly[String] = Poly#555214b9
scala> val q = new Poly(List("fish","cat","dog"))
q: Poly[String] = Poly#20f5498f
scala> val r = p+q; r.coef
r: Poly[String] = Poly#180f471e
res0: List[String] = List(redfish, bluecat, dog)
You could also ask the class provide the adder rather than the + method, or you could subclass Function2 so that you don't pollute things with implicit addition functions.
Recently, I wrote an iterator for a cartesian product of Anys, and started with a List of List, but recognized, that I can easily switch to the more abstract trait Seq.
I know, you like to see the code. :)
class Cartesian (val ll: Seq[Seq[_]]) extends Iterator [Seq[_]] {
def combicount: Int = (1 /: ll) (_ * _.length)
val last = combicount
var iter = 0
override def hasNext (): Boolean = iter < last
override def next (): Seq[_] = {
val res = combination (ll, iter)
iter += 1
res
}
def combination (xx: Seq [Seq[_]], i: Int): List[_] = xx match {
case Nil => Nil
case x :: xs => x (i % x.length) :: combination (xs, i / x.length)
}
}
And a client of that class:
object Main extends Application {
val illi = new Cartesian (List ("abc".toList, "xy".toList, "AB".toList))
// val ivvi = new Cartesian (Vector (Vector (1, 2, 3), Vector (10, 20)))
val issi = new Cartesian (Seq (Seq (1, 2, 3), Seq (10, 20)))
// val iaai = new Cartesian (Array (Array (1, 2, 3), Array (10, 20)))
(0 to 5).foreach (dummy => println (illi.next ()))
// (0 to 5).foreach (dummy => println (issi.next ()))
}
/*
List(a, x, A)
List(b, x, A)
List(c, x, A)
List(a, y, A)
List(b, y, A)
List(c, y, A)
*/
The code works well for Seq and Lists (which are Seqs), but of course not for Arrays or Vector, which aren't of type Seq, and don't have a cons-method '::'.
But the logic could be used for such collections too.
I could try to write an implicit conversion to and from Seq for Vector, Array, and such, or try to write an own, similar implementation, or write an Wrapper, which transforms the collection to a Seq of Seq, and calls 'hasNext' and 'next' for the inner collection, and converts the result to an Array, Vector or whatever. (I tried to implement such workarounds, but I have to recognize: it's not that easy. For a real world problem I would probably rewrite the Iterator independently.)
However, the whole thing get's a bit out of control if I have to deal with Arrays of Lists or Lists of Arrays and other mixed cases.
What would be the most elegant way to write the algorithm in the broadest, possible way?
There are two solutions. The first is to not require the containers to be a subclass of some generic super class, but to be convertible to one (by using implicit function arguments). If the container is already a subclass of the required type, there's a predefined identity conversion which only returns it.
import collection.mutable.Builder
import collection.TraversableLike
import collection.generic.CanBuildFrom
import collection.mutable.SeqLike
class Cartesian[T, ST[T], TT[S]](val ll: TT[ST[T]])(implicit cbf: CanBuildFrom[Nothing, T, ST[T]], seqLike: ST[T] => SeqLike[T, ST[T]], traversableLike: TT[ST[T]] => TraversableLike[ST[T], TT[ST[T]]] ) extends Iterator[ST[T]] {
def combicount (): Int = (1 /: ll) (_ * _.length)
val last = combicount - 1
var iter = 0
override def hasNext (): Boolean = iter < last
override def next (): ST[T] = {
val res = combination (ll, iter, cbf())
iter += 1
res
}
def combination (xx: TT[ST[T]], i: Int, builder: Builder[T, ST[T]]): ST[T] =
if (xx.isEmpty) builder.result
else combination (xx.tail, i / xx.head.length, builder += xx.head (i % xx.head.length) )
}
This sort of works:
scala> new Cartesian[String, Vector, Vector](Vector(Vector("a"), Vector("xy"), Vector("AB")))
res0: Cartesian[String,Vector,Vector] = empty iterator
scala> new Cartesian[String, Array, Array](Array(Array("a"), Array("xy"), Array("AB")))
res1: Cartesian[String,Array,Array] = empty iterator
I needed to explicitly pass the types because of bug https://issues.scala-lang.org/browse/SI-3343
One thing to note is that this is better than using existential types, because calling next on the iterator returns the right type, and not Seq[Any].
There are several drawbacks here:
If the container is not a subclass of the required type, it is converted to one, which costs in performance
The algorithm is not completely generic. We need types to be converted to SeqLike or TraversableLike only to use a subset of functionality these types offer. So making a conversion function can be tricky.
What if some capabilities can be interpreted differently in different contexts? For example, a rectangle has two 'length' properties (width and height)
Now for the alternative solution. We note that we don't actually care about the types of collections, just their capabilities:
TT should have foldLeft, get(i: Int) (to get head/tail)
ST should have length, get(i: Int) and a Builder
So we can encode these:
trait HasGet[T, CC[_]] {
def get(cc: CC[T], i: Int): T
}
object HasGet {
implicit def seqLikeHasGet[T, CC[X] <: SeqLike[X, _]] = new HasGet[T, CC] {
def get(cc: CC[T], i: Int): T = cc(i)
}
implicit def arrayHasGet[T] = new HasGet[T, Array] {
def get(cc: Array[T], i: Int): T = cc(i)
}
}
trait HasLength[CC] {
def length(cc: CC): Int
}
object HasLength {
implicit def seqLikeHasLength[CC <: SeqLike[_, _]] = new HasLength[CC] {
def length(cc: CC) = cc.length
}
implicit def arrayHasLength[T] = new HasLength[Array[T]] {
def length(cc: Array[T]) = cc.length
}
}
trait HasFold[T, CC[_]] {
def foldLeft[A](cc: CC[T], zero: A)(op: (A, T) => A): A
}
object HasFold {
implicit def seqLikeHasFold[T, CC[X] <: SeqLike[X, _]] = new HasFold[T, CC] {
def foldLeft[A](cc: CC[T], zero: A)(op: (A, T) => A): A = cc.foldLeft(zero)(op)
}
implicit def arrayHasFold[T] = new HasFold[T, Array] {
def foldLeft[A](cc: Array[T], zero: A)(op: (A, T) => A): A = {
var i = 0
var result = zero
while (i < cc.length) {
result = op(result, cc(i))
i += 1
}
result
}
}
}
(strictly speaking, HasFold is not required since its implementation is in terms of length and get, but i added it here so the algorithm will translate more cleanly)
now the algorithm is:
class Cartesian[T, ST[_], TT[Y]](val ll: TT[ST[T]])(implicit cbf: CanBuildFrom[Nothing, T, ST[T]], stHasLength: HasLength[ST[T]], stHasGet: HasGet[T, ST], ttHasFold: HasFold[ST[T], TT], ttHasGet: HasGet[ST[T], TT], ttHasLength: HasLength[TT[ST[T]]]) extends Iterator[ST[T]] {
def combicount (): Int = ttHasFold.foldLeft(ll, 1)((a,l) => a * stHasLength.length(l))
val last = combicount - 1
var iter = 0
override def hasNext (): Boolean = iter < last
override def next (): ST[T] = {
val res = combination (ll, 0, iter, cbf())
iter += 1
res
}
def combination (xx: TT[ST[T]], j: Int, i: Int, builder: Builder[T, ST[T]]): ST[T] =
if (ttHasLength.length(xx) == j) builder.result
else {
val head = ttHasGet.get(xx, j)
val headLength = stHasLength.length(head)
combination (xx, j + 1, i / headLength, builder += stHasGet.get(head, (i % headLength) ))
}
}
And use:
scala> new Cartesian[String, Vector, List](List(Vector("a"), Vector("xy"), Vector("AB")))
res6: Cartesian[String,Vector,List] = empty iterator
scala> new Cartesian[String, Array, Array](Array(Array("a"), Array("xy"), Array("AB")))
res7: Cartesian[String,Array,Array] = empty iterator
Scalaz probably has all of this predefined for you, unfortunately, I don't know it well.
(again I need to pass the types because inference doesn't infer the right kind)
The benefit is that the algorithm is now completely generic and that there is no need for implicit conversions from Array to WrappedArray in order for it to work
Excercise: define for tuples ;-)
I would like to add to all collections where it makes sense, an argMax method.
How to do it? Use implicits?
On Scala 2.8, this works:
val list = List(1, 2, 3)
def f(x: Int) = -x
val argMax = list max (Ordering by f)
As pointed by mkneissl, this does not return the set of maximum points. Here's an alternate implementation that does, and tries to reduce the number of calls to f. If calls to f don't matter that much, see mkneissl's answer. Also, note that his answer is curried, which provides superior type inference.
def argMax[A, B: Ordering](input: Iterable[A], f: A => B) = {
val fList = input map f
val maxFList = fList.max
input.view zip fList filter (_._2 == maxFList) map (_._1) toSet
}
scala> argMax(-2 to 2, (x: Int) => x * x)
res15: scala.collection.immutable.Set[Int] = Set(-2, 2)
The argmax function (as I understand it from Wikipedia)
def argMax[A,B](c: Traversable[A])(f: A=>B)(implicit o: Ordering[B]): Traversable[A] = {
val max = (c map f).max(o)
c filter { f(_) == max }
}
If you really want, you can pimp it onto the collections
implicit def enhanceWithArgMax[A](c: Traversable[A]) = new {
def argMax[B](f: A=>B)(implicit o: Ordering[B]): Traversable[A] = ArgMax.argMax(c)(f)(o)
}
and use it like this
val l = -2 to 2
assert (argMax(l)(x => x*x) == List(-2,2))
assert (l.argMax(x => x*x) == List(-2,2))
(Scala 2.8)
Yes, the usual way would be to use the 'pimp my library' pattern to decorate your collection. For example (N.B. just as illustration, not meant to be a correct or working example):
trait PimpedList[A] {
val l: List[A]
//example argMax, not meant to be correct
def argMax[T <% Ordered[T]](f:T => T) = {error("your definition here")}
}
implicit def toPimpedList[A](xs: List[A]) = new PimpedList[A] {
val l = xs
}
scala> def f(i:Int):Int = 10
f: (i: Int) Int
scala> val l = List(1,2,3)
l: List[Int] = List(1, 2, 3)
scala> l.argMax(f)
java.lang.RuntimeException: your definition here
at scala.Predef$.error(Predef.scala:60)
at PimpedList$class.argMax(:12)
//etc etc...
Nice and easy ? :
val l = List(1,0,10,2)
l.zipWithIndex.maxBy(x => x._1)._2
You can add functions to an existing API in Scala by using the Pimp my Library pattern. You do this by defining an implicit conversion function. For example, I have a class Vector3 to represent 3D vectors:
class Vector3 (val x: Float, val y: Float, val z: Float)
Suppose I want to be able to scale a vector by writing something like: 2.5f * v. I can't directly add a * method to class Float ofcourse, but I can supply an implicit conversion function like this:
implicit def scaleVector3WithFloat(f: Float) = new {
def *(v: Vector3) = new Vector3(f * v.x, f * v.y, f * v.z)
}
Note that this returns an object of a structural type (the new { ... } construct) that contains the * method.
I haven't tested it, but I guess you could do something like this:
implicit def argMaxImplicit[A](t: Traversable[A]) = new {
def argMax() = ...
}
Here's a way of doing so with the implicit builder pattern. It has the advantage over the previous solutions that it works with any Traversable, and returns a similar Traversable. Sadly, it's pretty imperative. If anyone wants to, it could probably be turned into a fairly ugly fold instead.
object RichTraversable {
implicit def traversable2RichTraversable[A](t: Traversable[A]) = new RichTraversable[A](t)
}
class RichTraversable[A](t: Traversable[A]) {
def argMax[That, C](g: A => C)(implicit bf : scala.collection.generic.CanBuildFrom[Traversable[A], A, That], ord:Ordering[C]): That = {
var minimum:C = null.asInstanceOf[C]
val repr = t.repr
val builder = bf(repr)
for(a<-t){
val test: C = g(a)
if(test == minimum || minimum == null){
builder += a
minimum = test
}else if (ord.gt(test, minimum)){
builder.clear
builder += a
minimum = test
}
}
builder.result
}
}
Set(-2, -1, 0, 1, 2).argmax(x=>x*x) == Set(-2, 2)
List(-2, -1, 0, 1, 2).argmax(x=>x*x) == List(-2, 2)
Here's a variant loosely based on #Daniel's accepted answer that also works for Sets.
def argMax[A, B: Ordering](input: GenIterable[A], f: A => B) : GenSet[A] = argMaxZip(input, f) map (_._1) toSet
def argMaxZip[A, B: Ordering](input: GenIterable[A], f: A => B): GenIterable[(A, B)] = {
if (input.isEmpty) Nil
else {
val fPairs = input map (x => (x, f(x)))
val maxF = fPairs.map(_._2).max
fPairs filter (_._2 == maxF)
}
}
One could also do a variant that produces (B, Iterable[A]), of course.
Based on other answers, you can pretty easily combine the strengths of each (minimal calls to f(), etc.). Here we have an implicit conversion for all Iterables (so they can just call .argmax() transparently), and a stand-alone method if for some reason that is preferred. ScalaTest tests to boot.
class Argmax[A](col: Iterable[A]) {
def argmax[B](f: A => B)(implicit ord: Ordering[B]): Iterable[A] = {
val mapped = col map f
val max = mapped max ord
(mapped zip col) filter (_._1 == max) map (_._2)
}
}
object MathOps {
implicit def addArgmax[A](col: Iterable[A]) = new Argmax(col)
def argmax[A, B](col: Iterable[A])(f: A => B)(implicit ord: Ordering[B]) = {
new Argmax(col) argmax f
}
}
class MathUtilsTests extends FunSuite {
import MathOps._
test("Can argmax with unique") {
assert((-10 to 0).argmax(_ * -1).toSet === Set(-10))
// or alternate calling syntax
assert(argmax(-10 to 0)(_ * -1).toSet === Set(-10))
}
test("Can argmax with multiple") {
assert((-10 to 10).argmax(math.pow(_, 2)).toSet === Set(-10, 10))
}
}