I have a collection of users, each user has a profile. I want to implement a query to make statistics on users.
This is my collection.
[
{
"_id": ObjectId("61d2db0d273a9076d630697b"),
"state": "VALIDATED",
"phone": "xxx",
"civilStatus": "SINGLE",
"gender": "MALE",
"professionalCategory": "STUDENT"
}
]
I want the result to contain an array of all genders of users in the database, and the number of users with each gender. same for civilStatus and professionalCategories
This is the result i am looking for :
{
"total": 2000
"validated": 1800,
"genders": [
{
"value": "MALE",
"count": 1200
},
{
"value": "FEMALE",
"count": 600
}
],
"civilStatus": [
{
"value": "SINGLE",
"count": "300"
}
...
],
"professionalCategories": [
{
"value": "STUDENT",
"count": "250"
}
...
]
}
I implemented the query, but I still have a few things that I don't know how to do.
db.getCollection("users").aggregate([
{
$group: {
_id: null,
validated: {
$sum: {
$cond: {
if: { $eq: ["$state", "VALIDATED"] },
then: 1,
else: 0
}
}
},
genders: {
$push: "$gender"
},
civilStatus: {
$push: "$civilStatus"
},
professionalCategories: {
$push: "$professionalCategory"
}
}
}
])
This is the result of this query :
{
"total": 2000
"validated": 1800,
"genders": [
"MALE",
"MALE",
"FEMALE",
"MALE",
"FEMALE",
"FEMALE"
...
],
"civilStatus": [
"SINGLE",
"MARIED",
"SINGLE",
...
],
"professionalCategories": [
"STUDENT",
"WORKER",
"RETIRED"
...
]
}
I miss how to group each gender, civil Status and professional Category and calculate the number of users for each one.
I also tried this query, but I don't know how to complete the "count" field for each item of the array :
db.getCollection("users").aggregate([
{
$group: {
_id: null,
validated: {
$sum: {
$cond: {
if: { $eq: ["$state", "VALIDATED"] },
then: 1,
else: 0
}
}
},
genders: {
$addToSet: {
value: "$gender",
count: {
//
}
}
},
civilStatus: {
$addToSet: {
value: "$civilStatus",
count: {
//
}
}
},
professionalCategories: {
$addToSet: {
value: "$professionalCategory",
count: {
//
}
}
},
}
}
])
if the query was to treat only one field, for example gender. it would have been easier with "unwind". but here I have 3 fields.
can someone help me please?
You can use following aggregation
Here is the code
db.collection.aggregate([
{
"$facet": {
"genders": [
{
"$group": {
"_id": "$gender",
"total": { $sum: 1 }
}
}
],
"civilStatus": [
{
"$group": {
"_id": "$civilStatus",
"total": { $sum: 1 }
}
}
],
"professionalCategory": [
{
"$group": {
"_id": "$professionalCategory",
"total": { $sum: 1 }
}
}
],
"validated": [
{
"$group": {
"_id": "$state",
"total": { "$sum": 1 }
}
}
]
}
},
{
$set: {
validated: {
"$filter": {
"input": "$validated",
"cond": {
"$eq": [ "$$this._id", "VALIDATED" ]
}
}
}
}
},
{
$set: {
validated: {
"$ifNull": [
{
"$arrayElemAt": [ "$validated", 0 ]
},
0
]
}
}
},
{
$set: { validated: "$validated.total" }
}
])
Working Mongo playground
My sample data:
{
"_id": "random_id_1",
"priority": "P1",
"owners": ["user-1", "user-2"],
},
{
"_id": "random_id_2",
"priority": "P1",
"owners": ["user-1", "user-2"],
},
{
"_id": "random_id_3",
"priority": "P2",
"owners": ["user-1", "user-2"],
},
I want to run an aggregation pipeline on the data involving match filters and grouping, also I want to limit the number of groups returned as well as the number of items in each group.
Essentially, if limit=2, limit_per_group=1, group_by=owner, priority=P1, I want the following results:
[
{
"data": [
{
"group_key": "user-1",
"total_items_in_group": 2,
"limited_items": [
{
"_id": "random_id_1",
"priority": "P1",
"owners": ["user-1", "user-2"],
},
],
},
{
"group_key": "user-2",
"total_items_in_group": 2,
"limited_items": [
{
"_id": "random_id_1",
"priority": "P1",
"owners": ["user-1", "user-2"],
},
],
},
]
},
{
"metadata": {
"total_items_matched": 2,
"total_groups": 2
}
},
]
Need some help on how to write an aggregation pipeline to get the required result.
My current query is as follows:
{
"$match": {
"priority": "P1"
}
},
{
"$facet": {
"data": [
{
$addFields: {
"group_by_owners": "$owners"
}
},
{
$unwind: "$group_by_owners"
},
{
$group: {
"_id": "$group_by_owners",
"total_items_in_group": {
$sum: 1
},
"items": {
$push: "$$ROOT"
}
}
},
{
$sort: {
"total": -1
}
},
{
$unset: "items.group_by_owners"
},
{
$project: {
"_id": 1,
"total_items_in_group": 1,
"limited_items": {
$slice: [
"$items",
1
]
}
}
},
{
"$limit": 2
}
],
"metadata": [
{
$count: "total_items_matched"
}
]
}
}
Mongo playground link
I am unable to calculate the total number of groups.
add new stage of $addfields at the end of pipeline
db.collection.aggregate([
{
"$match": {
"priority": "P1"
}
},
{
"$facet": {
"data": [
{
$addFields: {
"group_by_owners": "$owners"
}
},
{
$unwind: "$group_by_owners"
},
{
$group: {
"_id": "$group_by_owners",
"total_items_in_group": {
$sum: 1
},
"items": {
$push: "$$ROOT"
}
}
},
{
$sort: {
"total": -1
}
},
{
$unset: "items.group_by_owners"
},
{
$project: {
"_id": 0,
"group_key": "$_id",
"total_items_in_group": 1,
"limited_items": {
$slice: [
"$items",
1
]
}
}
},
{
"$limit": 2
}
],
"metadata": [
{
$count: "total_items_matched",
}
]
}
},
{
"$addFields": {
"metadata.total_groups": {
"$size": "$data"
}
}
}
])
https://mongoplayground.net/p/y5a0jvr6fxI
How do I get counts data grouped by every hour in 24 hours even if data is not present i.e. IF 0 will select 0
MonogDB 3.6
Input
[
{
"_id": ObjectId("5ccbb96706d1d47a4b2ced4b"),
"date": "2019-05-03T10:39:53.108Z",
"id": 166,
"update_at": "2019-05-03T02:45:36.208Z",
"type": "image"
},
{
"_id": ObjectId("5ccbb96706d1d47a4b2ced4c"),
"date": "2019-05-03T10:39:53.133Z",
"id": 166,
"update_at": "2019-05-03T02:45:36.208Z",
"type": "image"
},
{
"_id": ObjectId("5ccbb96706d1d47a4b2ced4d"),
"date": "2019-05-03T10:39:53.180Z",
"id": 166,
"update_at": "2019-05-03T20:45:36.208Z",
"type": "image"
},
{
"_id": ObjectId("5ccbb96706d1d47a4b2ced7a"),
"date": "2019-05-10T10:39:53.218Z",
"id": 166,
"update_at": "2019-12-04T10:45:36.208Z",
"type": "image"
},
{
"_id": ObjectId("5ccbb96706d1d47a4b2ced7b"),
"date": "2019-05-03T10:39:53.108Z",
"id": 166,
"update_at": "2019-05-05T10:45:36.208Z",
"type": "image"
},
{
"_id": ObjectId("5ccbb96706d1d47a4b2cedae"),
"date": "2019-05-03T10:39:53.133Z",
"id": 166,
"update_at": "2019-05-05T10:45:36.208Z",
"type": "image"
},
{
"_id": ObjectId("5ccbb96706d1d47a4b2cedad"),
"date": "2019-05-03T10:39:53.180Z",
"id": 166,
"update_at": "2019-05-06T10:45:36.208Z",
"type": "image"
},
{
"_id": ObjectId("5ccbb96706d1d47a4b2cedab"),
"date": "2019-05-10T10:39:53.218Z",
"id": 166,
"update_at": "2019-12-06T10:45:36.208Z",
"type": "image"
}
]
Implementation
db.collection.aggregate({
$match: {
update_at: {
"$gte": "2019-05-03T00:00:00.0Z",
"$lt": "2019-05-05T00:00:00.0Z"
},
id: {
"$in": [
166
]
}
}
},
{
$group: {
_id: {
$substr: [
"$update_at",
11,
2
]
},
count: {
"$sum": 1
}
},
},
{
$project: {
_id: 0,
hour: "$_id",
count: "$count"
}
},
{
$sort: {
hour: 1
}
})
Actual Output:
{
"count": 2,
"hour": "02"
},
{
"count": 1,
"hour": "20"
}
My expectation code show 24 hours event data is 0 or null and convert from example "02" as "02 AM" , "13" as "01 PM":
Expected Output
{
"count": 0,
"hour": "01" // 01 AM
},
{
"count": 2,
"hour": "02"
},
{
"count": 0,
"hour": "03"
},
{
"count": 0,
"hour": "04"
},
{
"count": 0,
"hour": "05"
},
{
"count": 1,
"hour": "20" // to 08 pm
}
Try this solution:
Explanation
We group by hour to count how many images are uploaded.
Then, we add extra field hour to create time interval (if you had v4.x, there is a better solution).
We flattern hour field (will create new documents) and split first 2 digits to match count and split last 2 digits to put AM / PM periods.
db.collection.aggregate([
{
$match: {
update_at: {
"$gte": "2019-05-03T00:00:00.0Z",
"$lt": "2019-05-05T00:00:00.0Z"
},
id: {
"$in": [
166
]
}
}
},
{
$group: {
_id: {
$substr: [
"$update_at",
11,
2
]
},
count: {
"$sum": 1
}
}
},
{
$addFields: {
hour: [
"0000",
"0101",
"0202",
"0303",
"0404",
"0505",
"0606",
"0707",
"0808",
"0909",
"1010",
"1111",
"1212",
"1301",
"1402",
"1503",
"1604",
"1705",
"1806",
"1907",
"2008",
"2109",
"2210",
"2311"
]
}
},
{
$unwind: "$hour"
},
{
$project: {
_id: 0,
hour: 1,
count: {
$cond: [
{
$eq: [
{
$substr: [
"$hour",
0,
2
]
},
"$_id"
]
},
"$count",
0
]
}
}
},
{
$group: {
_id: "$hour",
count: {
"$sum": "$count"
}
}
},
{
$sort: {
_id: 1
}
},
{
$project: {
_id: 0,
hour: {
$concat: [
{
$substr: [
"$_id",
2,
2
]
},
{
$cond: [
{
$gt: [
{
$substr: [
"$_id",
0,
2
]
},
"12"
]
},
" PM",
" AM"
]
}
]
},
count: "$count"
}
}
])
MongoPlayground
There's no "magic" solution, you'll have to hardcode it into your aggregation:
Heres an example using Mongo v3.2+ syntax with some $map and $filter magic:
db.collection.aggregate([
{
$match: {
update_at: {
"$gte": "2019-05-03T00:00:00.0Z",
"$lt": "2019-05-05T00:00:00.0Z"
},
id: {"$in": [166]}
}
},
{
$group: {
_id: {$substr: ["$update_at", 11, 2]},
count: {"$sum": 1}
}
},
{
$group: {
_id: null,
hours: {$push: {hour: "$_id", count: "$count"}}
}
},
{
$addFields: {
hours: {
$map: {
input: {
$concatArrays: [
"$hours",
{
$map: {
input: {
$filter: {
input: ["00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23"],
as: "missingHour",
cond: {
$not: {
$in: [
"$$missingHour",
{
$map: {
input: "$hours",
as: "hourObj",
in: "$$hourObj.hour"
}
}
]
}
}
}
},
as: "missingHour",
in: {hour: "$$missingHour", count: 0}
}
}
]
},
as: "hourObject",
in: {
count: "$$hourObject.count",
hour: {
$cond: [
{$eq: [{$substr: ["$$hourObject.hour", 0, 1]}, "0"]},
{$concat: ["$$hourObject.hour", " AM"]},
{
$concat: [{
$switch: {
branches: [
{case: {$eq: ["$$hourObject.hour", "13"]}, then: "1"},
{case: {$eq: ["$$hourObject.hour", "14"]}, then: "2"},
{case: {$eq: ["$$hourObject.hour", "15"]}, then: "3"},
{case: {$eq: ["$$hourObject.hour", "16"]}, then: "4"},
{case: {$eq: ["$$hourObject.hour", "17"]}, then: "5"},
{case: {$eq: ["$$hourObject.hour", "18"]}, then: "6"},
{case: {$eq: ["$$hourObject.hour", "19"]}, then: "7"},
{case: {$eq: ["$$hourObject.hour", "20"]}, then: "8"},
{case: {$eq: ["$$hourObject.hour", "21"]}, then: "9"},
{case: {$eq: ["$$hourObject.hour", "22"]}, then: "10"},
{case: {$eq: ["$$hourObject.hour", "23"]}, then: "11"},
],
default: "None"
}
}, " PM"]
}
]
}
}
}
}
}
},
{
$unwind: "$hours"
},
{
$project: {
_id: 0,
hour: "$hours.hour",
count: "$hours.count"
}
},
{
$sort: {
hour: 1
}
}
]);
A short explanation of the $addFields stage: we first add hours that we're missing, we then merge the two arrays (of the original found hours and the "new" missing hours), finally we convert to the required output ("01" to "01 AM").
If you're using Mongo v4+ I recommend you change the $group _id stage to use $dateFromString as its more consistent.
_id: {$hour: {$dateFromString: {dateString: "$update_at"}}}
If you do do that, you'll have to update the $filter and $map section to use numbers and not strings and eventually using $toString to cast into the format you want, hence the v4+ requirement.
You should store date values as Date objects instead of strings. I would do the formatting like this:
db.collection.aggregate(
[
{ $match: { ... } },
{
$group: {
_id: { h: { $hour: "$update_at" } },
count: { $sum: 1 }
}
},
{
$project: {
_id: 0,
hour: {
$switch: {
branches: [
{ case: { $lt: ["$_id.h", 10] }, then: { $concat: ["0", { $toString: "$_id.h" }, " AM"] } },
{ case: { $lt: ["$_id.h", 13] }, then: { $concat: [{ $toString: "$_id.h" }, " AM"] } },
{ case: { $lt: ["$_id.h", 22] }, then: { $concat: ["0", { $toString: { $subtract: ["$_id.h", 12] } }, " PM"] } },
{ case: { $lt: ["$_id.h", 24] }, then: { $concat: [{ $toString: { $subtract: ["$_id.h", 12] } }, " PM"] } }
]
}
},
hour24: "$_id.h",
count: 1
}
},
{ $sort: { hour24: 1 } }
])
As non-American I am not familiar with AM/PM rules, esp. for midnight and midday but I guess you get the principle.
Here is the query you can test it out, for MongoDB 4.0+
i will be improving query and update
const query = [{
$match: {
update_at: {
"$gte": ISODate("2019-05-03T00:00:00.0Z"),
"$lt": ISODate("2019-05-05T00:00:00.0Z")
},
id: {
"$in": [
166
]
}
}
},
{
$group: {
_id: { $hour: "$update_at" },
count: {
"$sum": 1
}
},
},
{
$addFields: {
hourStr: { $toString: { $cond: { if: { $gte: ["$_id", 12] }, then: { $subtract: [12, { $mod: [24, '$_id'] }] }, else: "$_id" } } },
}
},
{
$project: {
formated: { $concat: ["$hourStr", { $cond: { if: { $gt: ["$_id", 12] }, then: " PM", else: " AM" } }] },
count: "$count",
hour: 1,
}
}]
If you want to output in Indian Time formate. then below code work!
const query = [
{
$match: {
update_at: {
"$gte": ISODate("2019-05-03T00:00:00.0Z"),
"$lt": ISODate("2019-05-05T00:00:00.0Z")
},
id: {
"$in": [
166
]
}
}
},
{
$project: {
"h": { "$hour": { date: "$update_at", timezone: "+0530" } },
}
},
{
$group:
{
_id: { $hour: "$h" },
count: { $sum: 1 }
}
}
];
Data in mongo
[{
"_id": "5d71d1432f7c8151c58c4481",
"payment": {
"transactions": [
{
"_id": "5d71d1ff2f7c8151c58c44cf",
"method": "paytm",
"amount": 100,
"paymentOn": "2019-09-06T03:26:44.959Z"
},
{
"_id": "5d71d1ff2f7c8151c58c44ce",
"method": "cash",
"amount": 650,
"paymentOn": "2019-09-06T03:26:55.531Z"
}
],
"status": "partial"
},
"customer": "5d66c434c24f2b1fb6772014",
"order": {
"orderNumber": "WP-ORD-06092019-001",
"total": 770,
"balance": 20
}
},
{
"_id": "5d71d1432f7c8151c58c4481",
"payment": {
"transactions": [
{
"_id": "5d71d1ff2f7c8151c58c44cf",
"method": "paytm",
"amount": 100,
"paymentOn": "2019-09-06T03:26:44.959Z"
}
],
"status": "partial"
},
"customer": "5d66c434c24f2b1fb6772014",
"order": {
"orderNumber": "WP-ORD-06092019-001",
"total": 200,
"balance": 100
}
}]
I want to aggregate payments by method.
So the result would look like below:
Output:
Paytm: 200
Cash : 650
Unpaid(Balance): 120
I have tried:
[
{
'$unwind': {
'path': '$payment.transactions',
'preserveNullAndEmptyArrays': true
}
}, {
'$project': {
'amount': '$payment.transactions.amount',
'method': '$payment.transactions.method'
}
}, {
'$group': {
'_id': '$method',
'amount': {
'$sum': '$amount'
}
}
}
]
But how to include balance calculation as well
Using the above dataset, use the aggregate pipeline for calculation using aggregate as:
db.collection.aggregate([
{
$facet: {
paidAmounts: [
{ '$unwind': { 'path': '$payment.transactions', 'preserveNullAndEmptyArrays': true } },
{
$group: {
_id: "$payment.transactions.method",
amount: {
$sum: "$payment.transactions.amount"
}
}
}
],
leftAmounts: [
{
$group: {
_id: null,
balance: {
$sum: "$order.balance"
}
}
}
]
}
}
])
giving output:
here leftAmounts has left balance and paidAmounts having grouped paid data on basis of payment type
[
{
"leftAmounts": [
{
"_id": null,
"balance": 120
}
],
"paidAmounts": [
{
"_id": "cash",
"amount": 650
},
{
"_id": "paytm",
"amount": 200
}
]
}
]
Working solution : https://mongoplayground.net/p/7IWELKKMsWe
db.collection.aggregate([
{
"$unwind": "$payment.transactions"
},
{
"$group": {
"_id": "$_id",
"balance": {
"$first": "$order.balance"
},
"paytm": {
"$sum": {
"$cond": [
{
"$eq": [
"$payment.transactions.method",
"paytm"
]
},
"$payment.transactions.amount",
0
]
}
},
"cash": {
"$sum": {
"$cond": [
{
"$eq": [
"$payment.transactions.method",
"cash"
]
},
"$payment.transactions.amount",
0
]
}
}
}
},
{
"$group": {
"_id": null,
"balance": {
"$sum": "$balance"
},
"cash": {
"$sum": "$cash"
},
"paytm": {
"$sum": "$paytm"
}
}
}
])
I have a document with entries like this
{
"_id": ObjectId("5644c495d0807a1750043237"),
"siteid": "123456"
"amount": 1.32
}
Some documents have other amounts eg."cashbackAmount"
I want a sum and a count for each amount fields. Not every document contains all the amount fields.
I hjave tried the following
{
$group: {
"_id": "$siteid",
item2: { "$sum": "$amount" },
item3: { "$sum": "$totalAmount" },
item4: { "$sum": "$cashbackAmount" },
item5: { "$sum": "$unitPrice" },
}
}
It gives me the sum, but I cannot work out how to get the number times each amount field is present.
{ "$sum": 1 } does not work because that gives me all the documents that have any one of the totals fields.
I guess you probably want something like that
db.getCollection('amounts').aggregate([
{
$project: {
siteid: 1,
amount: 1,
totalAmount: 1,
unitPrice: 1,
cashbackAmount: 1,
amountPresent: {
$cond: {
if: "$amount",
then: 1,
else: 0
}
},
totalAmountPresent: {
$cond: {
if: "$totalAmount",
then: 1,
else: 0
}
},
cashbackAmountPresent: {
$cond: {
if: "$cashbackAmount",
then: 1,
else: 0
}
},
unitPricePresent: {
$cond: {
if: "$unitPrice",
then: 1,
else: 0
}
}
}
},
{
$group: {
"_id": "$siteid",
amountSum: { "$sum": "$amount" },
amountCount: { "$sum": "$amountPresent" },
totalAmountSum: { "$sum": "$totalAmount" },
totalAmountCount: { "$sum": "$totalAmountPresent" },
cashbackAmountSum: { "$sum": "$cashbackAmount" },
cashbackAmountCount: { "$sum": "$cashbackAmountPresent" },
unitPriceSum: { "$sum": "$unitPrice" },
unitPriceCount: { "$sum": "$unitPricePresent" }
}
}
])
If you know the amount fields in advance then you could do this in a single aggregation operation where you create the pipeline dynamically.
Check out the following demonstration:
var amountFields = ["amount", "totalAmount", "cashbackAmount", "unitPrice"],
groupOperator = { "$group": { "_id": "$siteid" } };
amountFields.forEach(function (field){
groupOperator["$group"][field+"Total"] = { "$sum": "$"+field };
groupOperator["$group"][field+"Count"] = {
"$sum": {
"$cond": [ { "$gt": [ "$"+field, null ] }, 1, 0 ]
}
};
});
db.test.aggregate([groupOperator]);
Populate Test Documents
db.test.insert([
{
"siteid": "123456",
"amount": 1.32
},
{
"siteid": "123456",
"cashbackAmount": 8.32
},
{
"siteid": "123456",
"cashbackAmount": 9.74
},
{
"siteid": "123456",
"unitPrice": 0.19
},
{
"siteid": "123456",
"amount": 27.8,
"totalAmount": 15.22,
"unitPrice": 5.10,
"cashbackAmount": 43.62
},
{
"siteid": "123456",
"unitPrice": 5.07
},
{
"siteid": "123456",
"amount": 12.98,
"totalAmount": 32.82
},
{
"siteid": "123456",
"amount": 6.65,
"unitPrice": 5.10
}
])
Sample Aggregation Output
{
"_id" : "123456",
"amountTotal" : 48.75,
"amountCount" : 4,
"totalAmountTotal" : 48.04,
"totalAmountCount" : 2,
"cashbackAmountTotal" : 61.68,
"cashbackAmountCount" : 3,
"unitPriceTotal" : 15.46,
"unitPriceCount" : 4
}