Simplify how to find unique rows of a Matlab array - matlab

I would like your help to vectorise (or, more generally, make more efficient) a Matlab code where:
Step 1: I construct a matrix C of size sgxR, where each row contains a sequence of ones and zeros, according to whether certain logical conditions are satisfied.
Step 2: I identify the indices of the unique rows of C.
I now describe the code in more details.
Step 1: Creation of the matrix C. I divide this step in 3 sub-steps.
Step 1.a: Create the 1x3 cell U_grid. For j=1,2,3, U_grid{j} is a sg x K matrix of numbers.
clear
rng default
n_U_sets=3; %This parameter will not be changed
sg=4; %sg is usually quite large, for instance 10^6
K=5; %This parameter can range between 3 and 8
Ugrid=cell(n_U_sets,1);
for j=1:n_U_sets
Ugrid{j}=randn(sg,K);
end
Step 1.b: For each g=1,...,sg
Take the 3 rows Ugrid{1}(g,:), Ugrid{2}(g,:), Ugrid{3}(g,:).
Take all possible 1x3 rows that can be formed such that the first element is from Ugrid{1}(g,:), the second element is from
Ugrid{2}(g,:), and the third element is from Ugrid{3}(g,:). There are K^3 such rows.
Create the matrix D{g} storing row-wise all possible pairs of such 1x3 rows. D{g} will have size (K^3*(K^3-1)/2)x6
This is coded as:
%Row indices of all possible pairs of rows
[y, x] = find(tril(logical(ones(K^(n_U_sets))), -1));
indices_pairs = [x, y]; %K^3*(K^3-1)/2
%Create D{g}
for g=1:sg
vectors = cellfun(#(x) {x(g,:)}, Ugrid); %1x3
T_temp = cell(1,n_U_sets);
[T_temp{:}] = ndgrid(vectors{:});
T_temp = cat(n_U_sets+1, T_temp{:});
T = reshape(T_temp,[],n_U_sets);
D{g}=[T(indices_pairs(:,1),:) T(indices_pairs(:,2),:)]; %(K^3*(K^3-1)/2) x (6)
end
Step 1.c: From D create C. Let R=(K^3*(K^3-1)/2). R is the size of any D{g}. C is a sg x R matrix constructed as follows: for g=1,...,sg and for r=1,...,R
if D{g}(r,1)>=D{g}(r,5)+D{g}(r,6) or D{g}(r,4)<=D{g}(r,2)+D{g}(r,3)
then C(g,r)=1
otherwise C(g,r)=0
This is coded as:
R=(K^(n_U_sets)*(K^(n_U_sets)-1)/2);
C=zeros(sg,R);
for g=1:sg
for r=1:R
if D{g}(r,1)>=D{g}(r,5)+D{g}(r,6) || D{g}(r,4)<=D{g}(r,2)+D{g}(r,3)
C(g,r)=1;
end
end
end
Step 2: Assign the same index to any two rows of C that are equal.
[~,~,idx] = unique(C,"rows");
Question: Steps 1.b and 1.c are the critical ones. With sg large and K between 3 and 8, they take a lot of time, due to the loop and reshape. Do you see any way to simplify them, for instance by vectorising?

Related

Comparing matrices of different size in matlab and storing values that are close

I have two matrices A and B. A(:,1) corresponds to an x-coordinate, A(:,2) corresponds to a y-coordinate, and A(:,3) corresponds to a certain radius. All three values in a row describe the same circle. Now let's say...
A =
[1,4,3]
[8,8,7]
[3,6,3]
B =
[1,3,3]
[1, 92,3]
[4,57,8]
[5,62,1]
[3,4,6]
[9,8,7]
What I need is to be able to loop through matrix A and determine if there are any rows in matrix B that are "similar" as in the x value is within a range (-2,2) of the x value of A (Likewise with the y-coordinate and radius).If it satisfies all three of these conditions, it will be added to a new matrix with the values that were in A. So for example I would need the above data to return...
ans =
[1,4,3]
[8,8,7]
Please help and thank you in advance to anyone willing to take the time!
You can use ismembertol.
result = A(ismembertol(A,B,2,'ByRows',1,'DataScale',1),:)
Manual method
A = [1,4,3;
8,8,7;
3,6,3];
B = [1,3,3;
1,92,3;
4,57,8;
5,62,1;
3,4,6;
9,8,7]; % example matrices
t = 2; % desired threshold
m = any(all(abs(bsxfun(#minus, A, permute(B, [3 2 1])))<=t, 2), 3);
result = A(m,:);
The key is using permute to move the first dimension of B to the third dimension. Then bsxfun computes the element-wise differences for all pairs of rows in the original matrices. A row of A should be selected if all the absolute differences with respect to any column of B are less than the desired threshold t. The resulting variable m is a logical index which is used for selecting those rows.
Using pdist2 (Statistics and Machine Learning Toolbox)
m = any(pdist2(A, B, 'chebychev')<=t, 2);
result = A(m,:);
Ths pdist2 function with the chebychev option computes the maximum coordinate difference (Chebychev distance, or L∞ metric) between pairs of rows.
With for loop
It should work:
A = [1,4,3;
8,8,7;
3,6,3]
B = [1,3,3;
1,92,3;
4,57,8;
5,62,1;
3,4,6;
9,8,7]
index = 1;
for i = 1:size(A,1)
C = abs(B - A(i,:));
if any(max(C,[],2)<=2)
out(index,:) = A(i,:);
index = index + 1
end
end
For each row of A, computes the absolute difference between B and that row, then checks if there exists a row in which the maximum is less than 2.
Without for loop
ind = any(max(abs(B - permute(A,[3 2 1])),[],2)<=2);
out = A(ind(:),:);

Matlab - indexing

I have a matrix A which is 21x1 and contains only ones and twos.
Then I have a matrix B which is 6 * 600 matrix of numbers ranging between 0 and 21.
I want to generate a matrix C which is 6 * 600 matrix containing ones and twos such that:
If B matrix has a zero, matrix C should have a zero on that place. If B matrix has number 5, then matrix C should have the element on row 5 of matrix A and so on and so forth.
Please let me know if this is not clear.
Let us generate some sample inputs:
A = randi(2,21,1);
B = randi(22,6,600)-1;
The output C will then be:
C = B*0; %// preallocation + take care of the elements that need to be 0
C(B>0) = A(B(B>0)); %// logical indexing
The explanation of the 2nd line is as follows:
RHS
B>0 - return a logical array the size of B which has the meaning of whether this specific element of B is larger-than-0 value.
B(B>0) - return the elements of B for which there are true values in B>0 (i.e. numbers that can be used to index into A).
A(...) - return the elements of A that correspond to the valid indices from B.
% Generate matrices fitting the description
A = round(rand(21,1))+1;
B = round(rand(6,600)*21);
C = zeros(6,600);
% Indexing impossible since zeroes cannot be used as index. So treat per element using linear indexing.
for ii = 1:(6*600)
if B(ii) == 0
C(ii) = 0;
else
C(ii) = A(B(ii));
end
end
Although the piece of code could be optimized further this is the most clear way of creating understanding and speed is not needed if it's only this small matrix evaluated a limited number of times.

Partial sum of a vector

For a vector v (e.g. v=[1,2,3,4,5]), and two index vectors (e.g. a=[1,1,1,2,3] and b=[3,4,5,5,5], with all a(i)<b(i)), I would like to construct w=sum(v(a:b)), which gives the values
w = zeros(length(a),1);
for i = 1:length(a)
w(i)=sum(v(a(i):b(i)));
end
It is slow when length(a) is large. Can I compute w without the for loop?
Yes! The nth element of cumsum(v) is the sum of the first n elements in v, so just take that and subtract the sum of the elements that you don't want to include:
v=[1,2,3,4,5]
a=[1,1,1,2,3]
b=[3,4,5,5,5]
C=cumsum(v)
C(b)-C(a)+v(a)
%// or alternatively
C=cumsum([0 v])
C(b+1)-C(a)
The following code works, but it is of course much less readable:
% assume v is a column vector
units = 1:length(v); units = units'; %units is a column vector
units_matrix = repmat(units, [1 length(a)]);
a_matrix = repmat(a, [length(v) 1]); % assuming a is is a row vector
b_matrix = repmat(b, [length(v) 1]);
weights = (units_matrix>=a_matrix) & (units_matrix<=b_matrix);
v_matrix = repmat(v, [1 length(a)]);
w = sum(v_matrix.*weights);
Explanation:
v_matrix contains copies of v. The summation will be done along
the column, so we need to prepare the other needed information in
vectorized form. units_matrix contains the indexes in v along the
columns. The columns are identical. a_matrix and b_matrix, in
each of their column, contains the indexes that are relevant for each
partial summation. All rows are identical. weights is a logical
matrix where, for each column, the indexes contained in
units_matrix between the corresponding a and b are 1 (true),
and the rest is 0. The element-wise multiplication thus filters the
"right" values, and all the indexes outside the range (again, for
each different column) is multiplied by zero. w is then he result
of the sum function, i.e. a row vector (every column of the
"filtered" matrix is summed).

element by element matrix multiplication in Matlab

So I have the following matrices:
A = [1 2 3; 4 5 6];
B = [0.5 2 3];
I'm writing a function in MATLAB that will allow me to multiply a vector and a matrix by element as long as the number of elements in the vector matches the number of columns. In A there are 3 columns:
1 2 3
4 5 6
B also has 3 elements so this should work. I'm trying to produce the following output based on A and B:
0.5 4 9
2 10 18
My code is below. Does anyone know what I'm doing wrong?
function C = lab11(mat, vec)
C = zeros(2,3);
[a, b] = size(mat);
[c, d] = size(vec);
for i = 1:a
for k = 1:b
for j = 1
C(i,k) = C(i,k) + A(i,j) * B(j,k);
end
end
end
end
MATLAB already has functionality to do this in the bsxfun function. bsxfun will take two matrices and duplicate singleton dimensions until the matrices are the same size, then perform a binary operation on the two matrices. So, for your example, you would simply do the following:
C = bsxfun(#times,mat,vec);
Referencing MrAzzaman, bsxfun is the way to go with this. However, judging from your function name, this looks like it's homework, and so let's stick with what you have originally. As such, you need to only write two for loops. You would use the second for loop to index into both the vector and the columns of the matrix at the same time. The outer most for loop would access the rows of the matrix. In addition, you are referencing A and B, which are variables that don't exist in your code. You are also initializing the output matrix C to be 2 x 3 always. You want this to be the same size as mat. I also removed your checking of the length of the vector because you weren't doing anything with the result.
As such:
function C = lab11(mat, vec)
[a, b] = size(mat);
C = zeros(a,b);
for i = 1:a
for k = 1:b
C(i,k) = mat(i,k) * vec(k);
end
end
end
Take special note at what I did. The outer-most for loop accesses the rows of mat, while the inner-most loop accesses the columns of mat as well as the elements of vec. Bear in mind that the number of columns of mat need to be the same as the number of elements in vec. You should probably check for this in your code.
If you don't like using the bsxfun approach, one alternative is to take the vector vec and make a matrix out of this that is the same size as mat by stacking the vector vec on top of itself for as many times as we have rows in mat. After this, you can do element-by-element multiplication. You can do this stacking by using repmat which repeats a vector or matrices a given number of times in any dimension(s) you want. As such, your function would be simplified to:
function C = lab11(mat, vec)
rows = size(mat, 1);
vec_mat = repmat(vec, rows, 1);
C = mat .* vec_mat;
end
However, I would personally go with the bsxfun route. bsxfun basically does what the repmat paradigm does under the hood. Internally, it ensures that both of your inputs have the same size. If it doesn't, it replicates the smaller array / matrix until it is the same size as the larger array / matrix, then applies an element-by-element operation to the corresponding elements in both variables. bsxfun stands for Binary Singleton EXpansion FUNction, which is a fancy way of saying exactly what I just talked about.
Therefore, your function is further simplified to:
function C = lab11(mat, vec)
C = bsxfun(#times, mat, vec);
end
Good luck!

Set the particular row and column zeros except the diagonal elements in matlab

Lets say I am given some indices like B = [10 23 32....];
Now lets say I have a matrix A. What I want to do is for each index from B lets say i, I want to set the ith row and ith column of A to 0 except the diagonal element A(i,i)(it remains untouched).
I can do this by looping. But I want some that is based upon some matrix multiplication which is quicker than just looping.
Any ideas guys?
You can store the diagonal elements temporarily somewhere else, index into A with B to set the corresponding rows and columns to zeros and finally plug back in the diagonal elements -
%// rows in A
rows = size(A,1);
%// Store the diagonal elements temporarily somewhere else
tmp_diagA = A(1:rows+1:end);
%// Set the ith rows and cols (obtained from B) to zero
A(B,:)=0;
A(:,B)=0;
%// Plug back in the diagonal elements in place
A(1:rows+1:end) = tmp_diagA;
Function calls are supposed to be expensive in MATLAB and we have almost have no function calls in this code, so I am hoping it to be fast enough.
One option you have is:
create the linear indexes of the diagonal elements:
[I, J]=size(A);
idx=sub2ind([I,J], B, B);
Set the horizontals and verticals to 0 and replace the diagonal elements:
NewA=A;
NewA(B, :)=zeros(numel(B),J);
NewA(:, B)=zeros(I,numel(B));
NewA(idx)=A(idx);
For square A:
b = zeros(size(A,1),1);
b(B) = B;
A = A.*bsxfun(#eq, b, b.')
For general A:
b1 = zeros(size(A,1),1);
b1(B) = B;
b2 = zeros(1,size(A,2));
b2(B) = B;
A = A.*bsxfun(#eq, b1, b2);
Suppose,
B=[10 23 32 12 15 18 20]
M=true(6)
M(B)=false %making the indexed elements false
M=or(M,diag(true(size(M,1),1))) %keep the diagonal elements one
% creating a matrix which has zero in ith row and ith column and diagonal has ones
M1=and(bsxfun(#or,bsxfun(#and,repmat(min(M,[],2),1,size(M,2)),min(M,[],1)),diag(true(size(M,1),1))),M)
%Now just multiply M1 with your matrix A, and you are done.
newA=A.*M1
You can combine above two lines in one, but I prefer them disjoint for readability purposes.