I just found this code written in python to convert Hexadecimal to Base64:
import codecs
hex = "10000000000002ae"
b64 = codecs.encode(codecs.decode(hex, 'hex'), 'base64').decode()
So, Is it possible to find same working one but in Autohotkey?
There many implementations, some very fast and some more simple. You can take a look at libcrypt.ahk for many encoding and encryption algorithms including Hexadecimal and Base64.
If you do use it, you'll want to look at LC_Hex2Bin() and LC_Base64_Encode(). Examples are available too. You will likely want this libcrypt.ahk file in particular.
Example
#Include libcrypt.ahk
Hex := "48656c6c6f20576f726c642100"
len := LC_Hex2Bin(Bin, Hex)
LC_Base64_Encode(base64, Bin, len)
MsgBox % base64
Or as single function
#Include libcrypt.ahk
MsgBox % hexstring2base64("48656c6c6f20576f726c642100")
hexstring2base64(hex_string) {
len := LC_Hex2Bin(Bin, hex_string)
LC_Base64_Encode(base64, Bin, len)
return base64
}
Related
I want to get the UTF-16 code unit at a given index in ABAP.
Same can be done in JavaScript with charCodeAt().
For example "d".charCodeAt(); will give back 100.
Is there a similar functionality in ABAP?
This can be done with class CL_ABAP_CONV_OUT_CE
DATA(lo_converter) = cl_abap_conv_out_ce=>create( encoding = '4103' ). "Litte Endian
TRY.
CALL METHOD lo_converter->convert
EXPORTING
data = 'a'
n = 1
IMPORTING
buffer = DATA(lv_buffer). "lv_buffer will 0061
CATCH ...
ENDTRY.
Codepage 4102 is for UTF-16 Big endian.
It is possible to encode not just a single character, but a string as well:
EXPORTING
data = 'abc'
n = 3
"n" always stands for the length of the string you want to be encoded. It could be less, than the actual length of the string.
When you say you "want to get the UTF-16 code unit",
either you mean the Unicode code point, e.g. the character d is always U+0064 (official "name" of Unicode character, the two bytes 0x0064 being the hexadecimal representation of decimal 100),
or you mean you want to encode d to UTF-16 little endian (SAP code page 4103) or big endian (SAP code page 4102) which gives respectively 2 bytes 0x4400 or 2 bytes 0x0044.
For the second case, see József answer.
For the first case, you may get it using the method UCCP (UniCode Code Point) or UCCPI (UniCode Code Point Integer) of class CL_ABAP_CONV_OUT_CE:
DATA: l_unicode_point_hex TYPE x LENGTH 2,
l_unicode_point_int TYPE i.
l_unicode_point_hex = cl_abap_conv_out_ce=>UCCP( 'd' ).
ASSERT l_unicode_point_hex = '0064'.
l_unicode_point_int = cl_abap_conv_out_ce=>UCCPI( 'd' ).
ASSERT l_unicode_point_int = 100.
EDIT: Note that the two methods return always the same values whatever the SAP system code page is (4102, 4103 or whatever).
My objective is to take a character which represents to UK pound symbol and convert it to it's unicode equivalent in a string.
Here's my code and output so far from my test program:
#include <iostream>
#include <stdio.h>
int main()
{
char x = 163;
unsigned char ux = x;
const char *str = "\u00A3";
printf("x: %d\n", x);
printf("ux: %d %x\n", ux, ux);
printf("str: %s\n", str);
return 0;
}
Output
$ ./pound
x: -93
ux: 163 a3
str: £
My goal is to take the unsigned char 0xA3 and put it into a string representing the unicode UK pound representation: "\u00A3"
What exactly is your question? Anyway, you say you're writing C++, but you're using char* and printf and stdlib.h so you're really writing C, and base C does not support unicode. Remember that a char in C is not a "character" it's just a byte, and a char* is not an array of characters, it's an array of bytes. When you printf the "\u00A3" string in your sample program, you are not printing a unicode character, you are actually printing those literal bytes, and your terminal is helping you out and interpreting them as a unicode character. The fact that it correctly prints the £ character is just coincidence. You can see this for yourself. If you printf str[0] in your sample program you should just see the "\" character.
If you want to use unicode correctly in C you'll need to use a library. There are many to choose from and I haven't used any of them enough to recommend one. Or you'll need to use C++11 or newer and use std::wstring and friends. But what you are doing is not real unicode and will not work as you expect in the long run.
I understand that you have a hex string and perform SHA256 on it twice and then byte-swap the final hex string. The goal of this code is to find a Merkle Root by concatenating two transactions. I would like to understand what's going on in the background a bit more. What exactly are you decoding and encoding?
import hashlib
transaction_hex = "93a05cac6ae03dd55172534c53be0738a50257bb3be69fff2c7595d677ad53666e344634584d07b8d8bc017680f342bc6aad523da31bc2b19e1ec0921078e872"
transaction_bin = transaction_hex.decode('hex')
hash = hashlib.sha256(hashlib.sha256(transaction_bin).digest()).digest()
hash.encode('hex_codec')
'38805219c8ac7e9a96416d706dc1d8f638b12f46b94dfd1362b5d16cf62e68ff'
hash[::-1].encode('hex_codec')
'ff682ef66cd1b56213fd4db9462fb138f6d8c16d706d41969a7eacc819528038'
header_hex is a regular string of lower case ASCII characters and the decode() method with 'hex' argument changes it to a (binary) string (or bytes object in Python 3) with bytes 0x93 0xa0 etc. In C it would be an array of unsigned char of length 64 in this case.
This array/byte string of length 64 is then hashed with SHA256 and its result (another binary string of size 32) is again hashed. So hash is a string of length 32, or a bytes object of that length in Python 3. Then encode('hex_codec') is a synomym for encode('hex') (in Python 2); in Python 3, it replaces it (so maybe this code is meant to work in both versions). It outputs an ASCII (lower hex) string again that replaces each raw byte (which is just a small integer) with a two character string that is its hexadecimal representation. So the final bit reverses the double hash and outputs it as hexadecimal, to a form which I usually call "lowercase hex ASCII".
Say we have a string:
s = '\xe5\xaf\x92\xe5\x81\x87\\u2014\\u2014\xe5\x8e\xa6\xe9\x97\xa8'
Somehow two symbols, '—', whose Unicode is \u2014 was not correctly encoded as '\xe2\x80\x94' in UTF-8. Is there an easy way to decode this string? It should be decoded as 寒假——厦门
Manually using the replace function is OK:
t = u'\u2014'
s.replace('\u2014', t.encode('utf-8')
print s
However, it is not automatic. If we extract the Unicode,
index = s.find('\u')
t = s[index : index+6]
then t = '\\u2014'. How to convert it to UTF-8 code?
You're missing extra slashes in your replace()
It should be:
s.replace("\\u2014", u'\u2014'.encode("utf-8") )
Check my warning in the comments of the question. You should not end up in this situation.
say pack "A*", "asdf"; # Prints "asdf"
say pack "s", 0x41 * 256 + 0x42; # Prints "BA" (0x41 = 'A', 0x42 = 'B')
The first line makes sense: you're taking an ASCII encoded string, packing it into a string as an ASCII string. In the second line, the packed form is "\x42\x41" because of the little endian-ness of short integers on my machine.
However, I can't shake the feeling that somehow, I should be able to treat the packed string from the second line as a number, since that's how (I assume) Perl stores numbers, as little-endian sequence of bytes. Is there a way to do so without unpacking it? I'm trying to get the correct mental model for the thing that pack() returns.
For instance, in C, I can do this:
#include <stdio.h>
int main(void) {
char c[2];
short * x = c;
c[0] = 0x42;
c[1] = 0x41;
printf("%d\n", *x); // Prints 16706 == 0x41 * 256 + 0x42
return 0;
}
If you're really interested in how Perl stores data internally, I'd recommend PerlGuts Illustrated. But usually, you don't have to care about stuff like that because Perl doesn't give you access to such low-level details. These internals are only important if you're writing XS extensions in C.
If you want to "cast" a two-byte string to a C short, you can use the unpack function like this:
$ perl -le 'print unpack("s", "BA")'
16706
However, I can't shake the feeling that somehow, I should be able to treat the packed string from the second line as a number,
You need to unpack it first.
To be able to use it as a number in C, you need
char* packed = "\x42\x41";
int16_t int16;
memcpy(&int16, packed, sizeof(int16_t));
To be able to use it as a number in Perl, you need
my $packed = "\x42\x41";
my $num = unpack('s', $packed);
which is basically
use Inline C => <<'__EOI__';
SV* unpack_s(SV* sv) {
STRLEN len;
char* buf;
int16_t int16;
SvGETMAGIC(sv);
buf = SvPVbyte(sv, len);
if (len != sizeof(int16_t))
croak("usage");
Copy(buf, &int16, 1, int16_t);
return newSViv(int16);
}
__EOI__
my $packed = "\x42\x41";
my $num = unpack_s($packed);
since that's how (I assume) perl stores numbers, as little-endian sequence of bytes.
Perl stores numbers in one of following three fields of a scalar:
IV, a signed integer of size perl -V:ivsize (in bytes).
UV, an unsigned integer of size perl -V:uvsize (in bytes). (ivsize=uvsize)
NV, a floating point numbers of size perl -V:nvsize (in bytes).
In all case, native endianness is used.
I'm trying to get the correct mental model for the thing that pack() returns.
pack is used to construct "binary data" for interfacing with external APIs.
I see pack as a serialization function. It takes as input Perl values, and outputs a serialized form. The fact the output serialized form happens to be a Perl bytestring is more of an implementation detail than a core functionality.
As such, all you're really expected to do with the resulting string is feed it to unpack, though the serialized form is convenient to have it move around processes, hosts, planets.
If you're interested in serializing it to a number instead, consider using vec:
say vec "BA", 0, 16; # prints 16961
To take a closer look at the string's internal representation, take a look at Devel::Peek, though you're not going to see anything surprising with a pure ASCII string.
use Devel::Peek;
Dump "BA";
SV = PV(0xb42f80) at 0xb56300
REFCNT = 1
FLAGS = (POK,READONLY,pPOK)
PV = 0xb60cc0 "BA"\0
CUR = 2
LEN = 16