animation to show generation of certain random line segments - matlab

I am trying to understand these by myself
,
I want to simulate some straight lines, in Matlab, as follows:
f(t,z)=a(z)t+b(z) where a(z) and b(z) are uniformly distributed random variable in the interval [-1,1] and t is time between [-2,2]. More simply: f(t)= at+b, and z is the random index of the constant (a,b) and let say [-1,+1] is the sample space for z and z is uniformly distributed.
Could anyone help me with the code? Is there any way to show the random generation of the straight line as an animation? Thank you very much for any help.
I am trying like this:
a= rand(-1,1);
b=rand(-1,1);
-2<t<2;
f=a*t+b;
plot(t, f);
But I am getting error Unrecognized function or variable 't'.

Your attempt is not valid MATLAB syntax,
-2<t<2 does not do anything, other than produce the error you're seeing because t does not exist
f = a*t+b you can't define functions like this, you probably want to use an anonymous function.
You can't plot t because you haven't defined it, and you can't plot f because you haven't properly defined that either in terms of a valid t.
You need to define some discrete values for t. In this case two values is enough, because you're only plotting straight lines anyway. You could use linspace or the colon operator to create a finer spaced array for whatever reason.
N = 10; % Number of lines to plot
t = [-2,2]; % We want lines between -2 and 2
a = rand(N,1)*2-1; % N random values between -1 and +1
b = rand(N,1)*2-1; % N random values between -1 and +1
f = #(t,z) a(z)*t + b(z); % Define f in terms of axis t and index z
% Plotting
figure; hold on;
for iz = 1:N
plot( t, f(t,iz) );
end
This gives an image something like this:
If you need an "animation", you could add a pause, e.g. pause(1) inside the loop

Related

How can I define Y to be different for different X values like a histogram

I'm trying to plot a probability mass function for the probability of certain sums when rolling three dices and I found this example in MathCad and wondered if there is anything like it in MatLab?
I imagine you’d build that as a lookup table rather than a series of if/else statements. It is easy to compute the probabilities using convolution:
f1 = ones(1,6);
f2 = conv(f1,f1);
f = conv(f2,f1);
% because f contains values from x=3 to 18,
% rather than starting at 1 as MATLAB arrays do,
% we add two zeros to the front:
f = [0,0,f];
Now f(x) returns the probability of throwing x.

How do I plot relations in matlab?

I want to plot relations like y^2=x^2(x+3) in MATLAB without using ezplot or doing algebra to find each branch of the function.
Does anyone know how I can do this? I usually create a linspace and then create a function over the linspace. For example
x=linspace(-pi,pi,1001);
f=sin(x);
plot(x,f)
Can I do something similar for the relation I have provided?
What you could do is use solve and allow MATLAB's symbolic solver to symbolically solve for an expression of y in terms of x. Once you do this, you can use subs to substitute values of x into the expression found from solve and plot all of these together. Bear in mind that you will need to cast the result of subs with double because you want the numerical result of the substitution. Not doing this will still leave the answer in MATLAB's symbolic format, and it is incompatible for use when you want to plot the final points on your graph.
Also, what you'll need to do is that given equations like what you have posted above, you may have to loop over each solution, substitute your values of x into each, then add them to the plot.
Something like the following. Here, you also have control over the domain as you have desired:
syms x y;
eqn = solve('y^2 == x^2*(x+3)', 'y'); %// Solve for y, as an expression of x
xval = linspace(-1, 1, 1000);
%// Spawn a blank figure and remember stuff as we throw it in
figure;
hold on;
%// For as many solutions as we have...
for idx = 1 : numel(eqn)
%// Substitute our values of x into each solution
yval = double(subs(eqn(idx), xval));
%// Plot the points
plot(xval, yval);
end
%// Add a grid
grid;
Take special care of how I used solve. I specified y because I want to solve for y, which will give me an expression in terms of x. x is our independent variable, and so this is important. I then specify a grid of x points from -1 to 1 - exactly 1000 points actually. I spawn a blank figure, then for as many solutions to the equation that we have, we determine the output y values for each solution we have given the x values that I made earlier. I then plot these on a graph of these points. Note that I used hold on to add more points with each invocation to plot. If I didn't do this, the figure would refresh itself and only remember the most recent call to plot. You want to put all of the points on here generated from all of the solution. For some neatness, I threw a grid in.
This is what I get:
Ok I was about to write my answer and I just saw that #rayryeng proposed a similar idea (Good job Ray!) but here it goes. The idea is also to use solve to get an expression for y, then convert the symbolic function to an anonymous function and then plot it. The code is general for any number of solutions you get from solve:
clear
clc
close all
syms x y
FunXY = y^2 == x^2*(x+3);
%//Use solve to solve for y.
Y = solve(FunXY,y);
%// Create anonymous functions, stored in a cell array.
NumSol = numel(Y); %// Number of solutions.
G = cell(1,NumSol);
for k = 1:NumSol
G{k} = matlabFunction(Y(k))
end
%// Plot the functions...
figure
hold on
for PlotCounter = 1:NumSol
fplot(G{PlotCounter},[-pi,pi])
end
hold off
The result is the following:
n = 1000;
[x y] = meshgrid(linspace(-3,3,n),linspace(-3,3,n));
z = nan(n,n);
z = (y .^ 2 <= x .^2 .* (x + 3) + .1);
z = z & (y .^ 2 >= x .^2 .* (x + 3) - .1);
contour(x,y,z)
It's probably not what you want, but I it's pretty cool!

evaluating a self made function for a cector and then plotting in matlab

i have created a function that represents a triangle sign.
this function does not work on vectors. i want to evaluate a vector x:
x=[-2:0.01:2]
and save the answer in vector y, for this purpose i came up with the following code:
for i=1:400, y(i) = triangle(x(i))
after i got the ans i plotted is using plot. in this case it worked ok but i am interested on observing the influence of time shifting and shrinking so when i try to use lets say:
for i=1:200, y(i) = triangle(x(2*i))
i get a vector y not the same length as vector x and i cant even plot them... is there any easy way to achieve it? and how should i plot the answer?
here is my function:
function [ out1 ] = triangle( input1 )
if abs(input1) < 1,
out1 = 1 - abs(input1);
else
out1 = 0;
end
end
y is a different length in each for loop because each loop iterated a different number of times. In the example below, I use the same for loops and plot y2 with the corresponding values of x. i is already defined in matlab so I've changed it to t in the example below.
clear all
x=[-2:0.01:2];
for t=1:400
y(t) = triangle(x(t));
end
for t=1:200
y2(t) = triangle(x(2*t));
end
Or, if you want to see y2 plotted over the same range you can increase the size of x:
clear all
x=[-2:0.01:8];
for t=1:400
y(t) = triangle(x(t));
end
for t=1:400
y2(t) = triangle(x(2*t));
end
plot(x(1:length(y)),y,'r')
hold on
plot(x(1:length(y2)),y2,'b')

How can I contour plot a custom function?

I have a custom function which returns either 0 or 1 depending on two given inputs:
function val = myFunction(val1, val2)
% logic to determine if val=1 or val=0
end
How can I create a contour plot of the function over the x,y coordinates generated by the following meshgrid?
meshgrid(0:.5:3, 0:.5:3);
This plot will just simply display where the function is 0 or 1 on the contour map.
If your function myFunction is not designed to handle matrix inputs, then you can use the function ARRAYFUN to apply it to all the corresponding entries of x and y:
[x,y] = meshgrid(0:0.5:3); %# Create a mesh of x and y points
z = arrayfun(#myFunction,x,y); %# Compute z (same size as x and y)
Then you could use the function CONTOUR to generate a contour plot for the above data. Since your z data only has 2 different values, it would probably make sense for you to only plot one contour level (which would be at a value of 0.5, halfway between your two values). You might also want to instead use the function CONTOURF, which produces color-filled contours that will clearly show where the ones and zeroes are:
contourf(x,y,z,1); %# Plots 1 contour level, filling the area on either
%# side with different color
NOTE: Since you are plotting data that only has ones and zeroes, plotting contours may not be the best way to visualize it. I would instead use something like the function IMAGESC, like so:
imagesc(x(1,:),y(:,1),z);
Keep in mind the y-axis in this plot will be reversed relative to the plot generated by CONTOURF.
The following will do it:
function bincontour
clear; clc;
xrange = 0:.5:3;
yrange = 1:.5:5;
[xmesh, ymesh] = meshgrid(xrange, yrange);
z = arrayfun(#myFunction, xmesh, ymesh);
contourf(xrange, yrange, z, 5)
end
function val = myFunction(val1, val2)
val = rand() > 0.5;
end

maybe matrix plot!

for an implicit equation(name it "y") of lambda and beta-bar which is plotted with "ezplot" command, i know it is possible that by a root finding algorithm like "bisection method", i can find solutions of beta-bar for each increment of lambda. but how to build such an algorithm to obtain the lines correctly.
(i think solutions of beta-bar should lie in an n*m matrix)
would you in general show the methods of plotting such problem? thanks.
one of my reasons is discontinuity of "ezplot" command for my equation.
ok here is my pic:
alt text http://www.mojoimage.com/free-image-hosting-view-05.php?id=5039TE-beta-bar-L-n2-.png
or
http://www.mojoimage.com/free-image-hosting-05/5039TE-beta-bar-L-n2-.pngFree Image Hosting
and my code (in short):
h=ezplot('f1',[0.8,1.8,0.7,1.0]);
and in another m.file
function y=f1(lambda,betab)
n1=1.5; n2=1; z0=120*pi;
d1=1; d2=1; a=1;
k0=2*pi/lambda;
u= sqrt(n1^2-betab^2);
wb= sqrt(n2^2-betab^2);
uu=k0*u*d1;
wwb=k0*wb*d2 ;
z1=z0/u; z1_b=z1/z0;
a0_b=tan(wwb)/u+tan(uu)/wb;
b0_b=(1/u^2-1/wb^2)*tan(uu)*tan(wwb);
c0_b=1/(u*wb)*(tan(uu)/u+tan(wwb)/wb);
uu0= k0*u*a; m=0;
y=(a0_b*z1_b^2+c0_b)+(a0_b*z1_b^2-c0_b)*...
cos(2*uu0+m*pi)+b0_b*z1_b*sin(2*uu0+m*pi);
end
fzero cant find roots; it says "Function value must be real and finite".
anyway, is it possible to eliminate discontinuity and only plot real zeros of y?
heretofore,for another function (namely fTE), which is :
function y=fTE(lambda,betab,s)
m=s;
n1=1.5; n2=1;
d1=1; d2=1; a=1;
z0=120*pi;
k0=2*pi/lambda;
u = sqrt(n1^2-betab^2);
w = sqrt(betab^2-n2^2);
U = k0*u*d1;
W = k0*w*d2 ;
z1 = z0/u; z1_b = z1/z0;
a0_b = tanh(W)/u-tan(U)/w;
b0_b = (1/u^2+1/w^2)*tan(U)*tanh(W);
c0_b = -(tan(U)/u+tanh(W)/w)/(u*w);
U0 = k0*u*a;
y = (a0_b*z1_b^2+c0_b)+(a0_b*z1_b^2-c0_b)*cos(2*U0+m*pi)...
+ b0_b*z1_b*sin(2*U0+m*pi);
end
i'd plotted real zeros of "y" by these codes:
s=0; % s=0 for even modes and s=1 for odd modes.
lmin=0.8; lmax=1.8;
bmin=1; bmax=1.5;
lam=linspace(lmin,lmax,1000);
for n=1:length(lam)
increment=0.001; tolerence=1e-14; xstart=bmax-increment;
x=xstart;
dx=increment;
m=0;
while x > bmin
while dx/x >= tolerence
if fTE(lam(n),x,s)*fTE(lam(n),x-dx,s)<0
dx=dx/2;
else
x=x-dx;
end
end
if abs(real(fTE(lam(n),x,s))) < 1e-6 %because of discontinuity some answers are not correct.%
m=m+1;
r(n,m)=x;
end
dx=increment;
x=0.99*x;
end
end
figure
hold on,plot(lam,r(:,1),'k'),plot(lam,r(:,2),'c'),plot(lam,r(:,3),'m'),
xlim([lmin,lmax]);ylim([1,1.5]),
xlabel('\lambda(\mum)'),ylabel('\beta-bar')
you see i use matrix to save data for this plot.
![alt text][2]
because here lines start from left(axis) to rigth. but if the first line(upper) starts someplace from up to rigth(for the first figure and f1 function), then i dont know how to use matrix. lets improve this method.
[2]: http://www.mojoimage.com/free-image-hosting-05/2812untitled.pngFree Image Hosting
Sometimes EZPLOT will display discontinuities because there really are discontinuities or some form of complicated behavior of the function occurring there. You can see this by generating your plot in an alternative way using the CONTOUR function.
You should first modify your f1 function by replacing the arithmetic operators (*, /, and ^) with their element-wise equivalents (.*, ./, and .^) so that f1 can accept matrix inputs for lambda and betab. Then, run the code below:
lambda = linspace(0.8,1.8,500); %# Create a vector of 500 lambda values
betab = linspace(0.7,1,500); %# Create a vector of 500 betab values
[L,B] = meshgrid(lambda,betab); %# Create 2-D grids of values
y = f1(L,B); %# Evaluate f1 at every point in the grid
[c,h] = contour(L,B,y,[0 0]); %# Plot contour lines for the value 0
set(h,'Color','b'); %# Change the lines to blue
xlabel('\lambda'); %# Add an x label
ylabel('$\overline{\beta}$','Interpreter','latex'); %# Add a y label
title('y = 0'); %# Add a title
And you should see the following plot:
Notice that there are now additional lines in the plot that did not appear when using EZPLOT, and these lines are very jagged. You can zoom in on the crossing at the top left and make a plot using SURF to get an idea of what's going on:
lambda = linspace(0.85,0.95,100); %# Some new lambda values
betab = linspace(0.95,1,100); %# Some new betab values
[L,B] = meshgrid(lambda,betab); %# Create 2-D grids of values
y = f1(L,B); %# Evaluate f1 at every point in the grid
surf(L,B,y); %# Make a 3-D surface plot of y
axis([0.85 0.95 0.95 1 -5000 5000]); %# Change the axes limits
xlabel('\lambda'); %# Add an x label
ylabel('$\overline{\beta}$','Interpreter','latex'); %# Add a y label
zlabel('y'); %# Add a z label
Notice that there is a lot of high-frequency periodic activity going on along those additional lines, which is why they look so jagged in the contour plot. This is also why a very general utility like EZPLOT was displaying a break in the lines there, since it really isn't designed to handle specific cases of complicated and poorly behaved functions.
EDIT: (response to comments)
These additional lines may not be true zero crossings, although it is difficult to tell from the SURF plot. There may be a discontinuity at those lines, where the function shoots off to -Inf on one side of the line and Inf on the other side of the line. When rendering the surface or computing the contour, these points on either side of the line may be mistakenly connected, giving the false appearance of a zero crossing along the line.
If you want to find a zero crossing given a value of lambda, you can try using the function FZERO along with an anonymous function to turn your function of two variables f1 into a function of one variable fcn:
lambda_zero = 1.5; %# The value of lambda at the zero crossing
fcn = #(x) f1(lambda_zero,x); %# A function of one variable (lambda is fixed)
betab_zero = fzero(fcn,0.94); %# Find the value of betab at the zero crossing,
%# using 0.94 as an initial guess