MATLAB is giving me a wrong multiplication answer - matlab

I'm trying to solve equations on Matlab but when I multiply small numbers it gives me the wrong answer
the equation is
link31=10^-3*[5.57119434 537.12980876 315.00];
link32=10^-3*[111.77337538 311.006435 276.05400828];
link3=link31-link32
M3=link31
ux31=((link31(1) - link32(1)))^2
ux32=((link31(2) - link32(2)))^2
ux33=((link31(3) - link32(3)))^2
u3 = link3./sqrt(ux31 + ux32 + ux33)
M3(1)=(u3(2)*link3(3)-u3(3)*link3(2))
M3(2)=-1*(u3(1)*link3(3)-u3(3)*link3(1))
M3(3)=(u3(1)*link3(2)-u3(2)*link3(1))
which makes
u3(2) = 0.8943
link3(3) = 0.0389
u3(3) = 0.1540
link3(2) = 0.2261
so M3(1)=(u3(2)*link3(3)-u3(3)*link3(2)) should be equal to -3.1130e-05 but MATLAB is making it equal to 6.9389e-18

Related

Definite integration using int command

Firstly, I'm quite new to Matlab.
I am currently trying to do a definite integral with respect to y of a particular function. The function that I want to integrate is
(note that the big parenthesis is multiplying with the first factor - I can't get the latex to not make it look like power)
I have tried plugging the above integral into Desmos and it worked as intended. My plan was to vary the value of x and y and will be using for loop via matlab.
However, after trying to use the int function to calculate the definite integral with the code as follow:
h = 5;
a = 2;
syms y
x = 3.8;
p = 2.*x.^2+2.*a.*y;
q = x.^2+y.^2;
r = x.^2+a.^2;
f = (-1./sqrt(1-(p.^2./(4.*q.*r)))).*(2.*sqrt(q).*sqrt(r).*2.*a-p.*2.*y.*sqrt(r)./sqrt(q))./(4.*q.*r);
theta = int(f,y,a+0.01,h) %the integral is undefined at y=2, hence the +0.01
the result is not quite as expected
theta =
int(-((8*461^(1/2)*(y^2 + 361/25)^(1/2))/5 - (461^(1/2)*y*(8*y + 1444/25))/(5*(y^2 + 361/25)^(1/2)))/((1 - (4*y + 722/25)^2/((1844*y^2)/25 + 665684/625))^(1/2)*((1844*y^2)/25 + 665684/625)), y, 21/10, 5)
After browsing through various posts, the common mistake is the undefined interval but the +0.01 should have fixed it. Any guidance on what went wrong is much appreciated.
The Definite Integrals example in the docs shows exactly this type of output when a closed form cannot be computed. You can approximate it numerically using vpa, i.e.
F = int(f,y,a,h);
theta = vpa(F);
Or you can do a numerical computation directly
theta = vpaintegral(f,y,a,h);
From the docs:
The vpaintegral function is faster and provides control over integration tolerances.

How to calculate out put definite integral in matlab

I have run the following for computing the numerical integration of the following function.
But in Matlab instead of a number as an output, it gives me a big expression.
gamma = sqrt(alpha^2 - beta^2);
K1=besselk(1,alpha*sqrt(delta^2+(x-mu)^2));
pdf = alpha*delta* K1/(pi*sqrt(delta^2+(x-mu)^2)) * exp(delta*gamma+ beta*(x-mu));
prob = int(pdf , x, 0,0.5);
with the following parameters :
mu = 0.034 ;
delta = 2.12;
alpha = 0.05;
beta = -0.001;
I have recived this result.
int((53*exp(59679899628370215233/562949953421312000000 - x/1000)*besselk(1, ((x - 17/500)^2 + 2809/625)^(1/2)/20))/(500*pi*((x - 17/500)^2 + 2809/625)^(1/2)), x, 0, 1/2)
I would appreciate any solution to answer this question. How can I compute this expression in Matlab?
The result you got is just not evaluated yet. To obtain a numerical answer with n significant digits, use,
prob_vpa = vpa(prob, n);
The result will still be a symbolic variable, for further symbolic computations. You can also convert it to double,
prob_double = double(prob);

How does one compute a single finite differences in Matlab efficiently?

I wanted to compute a finite difference with respect to the change of the function in Matlab. In other words
f(x+e_i) - f(x)
is what I want to compute. Note that its very similar to the first order numerical partial differentiation (forward differentiation in this case) :
(f(x+e_i) - f(x)) / (e_i)
Currently I am using for loops to compute it but it seems that Matlab is much slower than I thought. I am doing it as follows:
function [ dU ] = numerical_gradient(W,f,eps)
%compute gradient or finite difference update numerically
[D1, D2] = size(W);
dU = zeros(D1, D2);
for d1=1:D1
for d2=1:D2
e = zeros([D1,D2]);
e(d1,d2) = eps;
f_e1 = f(W+e);
f_e2 = f(W-e);
%numerical_derivative = (f_e1 - f_e2)/(2*eps);
%dU(d1,d2) = numerical_derivative
numerical_difference = f_e1 - f_e2;
dU(d1,d2) = numerical_difference;
end
end
it seems that its really difficult to vectorize the above code because for numerical differences follow the definition of the gradient and partial derivatives which is:
df_dW = [ ..., df_dWi, ...]
where df_dWi assumes the other coordinates are fixed and it only worries about the change of the variable Wi. Thus, I can't just change all the coordinates at once.
Is there a better way to do this? My intuition tells me that the best way to do this is to implement this not in matlab but in some other language, say C and then have matlab call that library. Is that true? Does it mean that the best solution is some Matlab library that does this for me?
I did see:
https://www.mathworks.com/matlabcentral/answers/332414-what-is-the-quickest-way-to-find-a-gradient-or-finite-difference-in-matlab-of-a-real-function-in-hig
but unfortunately, it computes exact derivatives, which isn't what I am looking for. I am explicitly looking for differences or "bad approximation" to the gradient.
Since it seems this code is not easy to vectorize (in fact my intuition tells me its not possible to do so) my only other idea is to implement this finite difference function in C and then have C call the function. Is this a good idea? Anyone know how to do this?
I did try reading the following:
https://www.mathworks.com/help/matlab/matlab_external/standalone-example.html
but it was too difficult to understand for me because I have no idea what a mex file is, if I need to have a arrayProduct.c file as well as a mex.h file, if I also needed a matlab file, etc. If there just existed a way to simply download a working example with all the functions they suggest there and some instructions to compile it, then it would be super helpful. But just reading the hmtl/article like that its impossible for me to infer what they want me to do.
For the sake of completness it seems reddit has some comments in its discussion of this:
https://www.reddit.com/r/matlab/comments/623m7i/how_does_one_compute_a_single_finite_differences/
Here is a more efficient doing so:
function [ vNumericalGrad ] = CalcNumericalGradient( hInputFunc, vInputPoint, epsVal )
numElmnts = size(vInputPoint, 1);
vNumericalGrad = zeros([numElmnts, 1]);
refVal = hInputFunc(vInputPoint);
for ii = 1:numElmnts
% Set the perturbation vector
refInVal = vInputPoint(ii);
vInputPoint(ii) = refInVal + epsVal;
% Compute Numerical Gradient
vNumericalGrad(ii) = (hInputFunc(vInputPoint) - refVal) / epsVal;
% Reset the perturbation vector
vInputPoint(ii) = refInVal;
end
end
This code allocate less memory.
The above code performance will be totally controlled by the speed of the hInputFunction.
The small tricks compared to original code are:
No memory reallocation of e each iteration.
Instead of addition of vectors W + e there are 2 assignments to the array.
Decreasing the calls to hInputFunction() by half by defining the reference value outside the loop (This only works for Forward / Backward difference).
Probably this will be very close to C code unless you can code in C more efficiently the function which computes the value (hInputFunction).
A full implementation can be found in StackOverflow Q44984132 Repository (It was Posted in StackOverflow Q44984132).
See CalcFunGrad( vX, hObjFun, difMode, epsVal ).
A way better approach (numerically more stable, no issue of choosing the perturbation hyperparameter, accurate up to machine precision) is to use algorithmic/automatic differentiation. For this you need the Matlab Deep Learning Toolbox. Then you can use dlgradient to compute the gradient. Below you find the source code attached corresponding to your example.
Most importantly, you can examine the error and observe that the deviation of the automatic approach from the analytical solution is indeed machine precision, while for the finite difference approach (I choose second order central differences) the error is orders of magnitude higher. For 100 points and a range of $[-10, 10]$ this errors are somewhat tolerable, but if you play a bit with Rand_Max and n_points you observe that the errors become larger and larger.
Error of algorithmic / automatic diff. is: 1.4755528111219851e-14
Error of finite difference diff. is: 1.9999999999348703e-01 for perturbation 1.0000000000000001e-01
Error of finite difference diff. is: 1.9999999632850161e-03 for perturbation 1.0000000000000000e-02
Error of finite difference diff. is: 1.9999905867860374e-05 for perturbation 1.0000000000000000e-03
Error of finite difference diff. is: 1.9664569947425062e-07 for perturbation 1.0000000000000000e-04
Error of finite difference diff. is: 1.0537897883625319e-07 for perturbation 1.0000000000000001e-05
Error of finite difference diff. is: 1.5469326944467290e-06 for perturbation 9.9999999999999995e-07
Error of finite difference diff. is: 1.3322061696937969e-05 for perturbation 9.9999999999999995e-08
Error of finite difference diff. is: 1.7059535957436630e-04 for perturbation 1.0000000000000000e-08
Error of finite difference diff. is: 4.9702408787320664e-04 for perturbation 1.0000000000000001e-09
Source Code:
f2.m
function y = f2(x)
x1 = x(:, 1);
x2 = x(:, 2);
x3 = x(:, 3);
y = x1.^2 + 2*x2.^2 + 2*x3.^3 + 2*x1.*x2 + 2*x2.*x3;
f2_grad_analytic.m:
function grad = f2_grad_analytic(x)
x1 = x(:, 1);
x2 = x(:, 2);
x3 = x(:, 3);
grad(:, 1) = 2*x1 + 2*x2;
grad(:, 2) = 4*x2 + 2*x1 + 2 * x3;
grad(:, 3) = 6*x3.^2 + 2*x2;
f2_grad_AD.m:
function grad = f2_grad_AD(x)
x1 = x(:, 1);
x2 = x(:, 2);
x3 = x(:, 3);
y = x1.^2 + 2*x2.^2 + 2*x3.^3 + 2*x1.*x2 + 2*x2.*x3;
grad = dlgradient(y, x);
CalcNumericalGradient.m:
function NumericalGrad = CalcNumericalGradient(InputPoints, eps)
% (Central, second order accurate FD)
NumericalGrad = zeros(size(InputPoints) );
for i = 1:size(InputPoints, 2)
perturb = zeros(size(InputPoints));
perturb(:, i) = eps;
NumericalGrad(:, i) = (f2(InputPoints + perturb) - f2(InputPoints - perturb)) / (2 * eps);
end
main.m:
clear;
close all;
clc;
n_points = 100;
Rand_Max = 20;
x_test_FD = rand(n_points, 3) * Rand_Max - Rand_Max/2;
% Calculate analytical solution
grad_analytic = f2_grad_analytic(x_test_FD);
grad_AD = zeros(n_points, 3);
for i = 1:n_points
x_test_dl = dlarray(x_test_FD(i,:) );
grad_AD(i,:) = dlfeval(#f2_grad_AD, x_test_dl);
end
Err_AD = norm(grad_AD - grad_analytic);
fprintf("Error of algorithmic / automatic diff. is: %.16e\n", Err_AD);
eps_range = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9];
for i = 1:length(eps_range)
eps = eps_range(i);
grad_FD = CalcNumericalGradient(x_test_FD, eps);
Err_FD = norm(grad_FD - grad_analytic);
fprintf("Error of finite difference diff. is: %.16e for perturbation %.16e\n", Err_FD, eps);
end

Finding the answer to an equation in matrix form which relates to each input individually

I am trying to recreate the following equation in MATLAB
This equation calculates the equivalent inertia.
I have values for Ln, Ln-1 and In which are stored in a matrices and I am assuming that Ltotal is simply the Max value of Ln. Den is a matrix storing the values for the equation.
% Ln
for lp = 1: bars-1
ln_p(1,lp) = radius_pin(1) - radius_pin(lp+1);
ln_w(1,lp) = radius_wheel(1) - radius_wheel(lp+1);
end
% Ln-1
for lp = 1:bars-1
lnMinus_p(1,lp) = radius_pin(1) - radius_pin(lp);
lnMinus_w(1,lp) = radius_wheel(1) - radius_wheel(lp);
end
% L^3 - (Ln-1)^3
lCubed_p = ln_p.^3 - lnMinus_p.^3;
lCubed_w = ln_w.^3 - lnMinus_w.^3;
% In
In_p = aChor_p.^3/12;
In_w = aChor_w.^3/12;
% Denominator of IE equation (inertia)
den_p = lCubed_p./In_p;
den_w = lCubed_w./In_w;
I need a code which will find the Ieq values (they should be in a matrix the same size as the inputs)
If you have an array L which contains all L_n values, and similarly for a vector I with values I_n, then your equation can be implemented simply:
I_eq = L_total^3 / sum( diff(L.^3)./I(2:end) )
I'll also re-write your code, because you seem to be missing the point about MATLAB syntax -- it can be pretty close to mathematical notation. I'll leave out the subscripts (because it's the same calculation for both the pin and wheel anyway):
lCubed = (radius(1)-radius(2:end)).^3 - (radius(1)-radius(1:end-1)).^3;
In = 1/12 * aChor_p.^3;
den = sum(lCubed./In);

solve In Matlab a quadratic equation with very small coefficients

I'm implementing a code in matlab to solve quadratic equations, using the resolvent formula:
Here´s the code:
clear all
format short
a=1; b=30000000.001; c=1/4;
rdelta=sqrt(b^2-4*a*c);
x1=(-b+rdelta)/(2*a);
x2=(-b-rdelta)/(2*a);
fprintf(' Roots of the polynomial %5.3f x^2 + %5.3f x+%5.3f \n',a,b,c)
fprintf ('x1= %e\n',x1)
fprintf ('x2= %e\n\n',x2)
valor_real_x1= -8.3333e-009;
valor_real_x2= -2.6844e+007;
error_abs_x1 = abs (valor_real_x1-x1);
error_abs_x2 = abs (valor_real_x2-x2);
error_rel_x1 = abs (error_abs_x1/valor_real_x1);
error_rel_x2 = abs (error_abs_x2/valor_real_x2);
fprintf(' absolute_errorx1 = |real value - obtained value| = |%e - %e| = %e \n',valor_real_x1,x1,error_abs_x1)
fprintf(' absolute_errorx2 = |real value - obtained value| = |%e - %e| = %e \n\n',valor_real_x2,x2,error_abs_x2)
fprintf(' relative error_x1 = |absolut error / real value| = |%e / %e| = %e \n',error_abs_x1,valor_real_x1,error_rel_x1 )
fprintf(' relative_error_x2 = |absolut error / real value| = |%e / %e| = %e \n',error_abs_x2,valor_real_x2,error_rel_x2)
The problem I have is that it gives me an exact solution, ie for values ​​a = 1, b = 30000000,001 c = 1/4, the values ​​of the roots are:
Roots of the polynomial 1.000 x^2 + 30000000.001 x+0.250
x1= -9.313226e-009
x2= -3.000000e+007
Knowing that the exact value of the roots of the polynomial are:
x1= -8.3333e-009
x2= -2.6844e+007
Which gives me the following errors in the absolute and relative precision of the calculations:
absolute_errorx1 = |real value - obtained value| = |-8.333300e-009 - -9.313226e-009| = 9.799257e-010
absolute_errorx2 = |real value - obtained value| = |-2.684400e+007 - -3.000000e+007| = 3.156000e+006
relative error_x1 = |absolut error / real value| = |9.799257e-010 / -8.333300e-009| = 1.175916e-001
relative_error_x2 = |absolut error / real value| = |3.156000e+006 / -2.684400e+007| = 1.175682e-001
My question is: Is there an optimum method to obtain the roots of a quadratic equation?, ie I can make changes to my code to reduce the relative error between the expected solution and the resulting solution?
Using the quadratic formula directly in this cases results in a large loss of numerical precision from subtracting two values of very similar magnitude. This is because the expression
sqrt(b*b - 4*a*c)
is nearly the same as b. So you should use only one of these two roots, the one that does not involve subtracting two very close values, and for the other root you can use (for instance) the fact that the product of roots of a quadratic is c/a. I'll let you fill in the gaps.
Why does this sound like a homework problem from a first class in numerical analysis?
It has been a while since I was that young, but as I recall there is a trick. Anyway, you are wrong. The true roots of that polynomial are
solve('x^2 + 30000000.001*x + 0.25')
ans =
-30000000.000999991666666666944442
-0.0000000083333333330555578703796293981491
How well does roots do here?
p = [1 30000000.001 1/4];
format long g
roots(p)
ans =
-30000000.001
-8.33333333305556e-09
That actually seems pretty good. How does HPF do?
DefaultNumberOfDigits 64
a = hpf(1);
b = hpf('30000000.001');
c = hpf('0.25');
r1 = (-b + sqrt(b*b - 4*a*c))/(2*a)
r1 =
-0.000000008333333333055557870379629398149125529835186899898569329967
r2 = (-b - sqrt(b*b - 4*a*c))/(2*a)
r2 =
-30000000.000999991666666666944442129620370601850874470164813100101
Yep, HPF works nicely enough too.
So what happens when you use double precision numbers and the standard formula? Yeah, crapola arrives.
a = 1;
b = 30000000.001;
c = 0.25;
>> r1 = (-b + sqrt(b*b - 4*a*c))/(2*a)
r1 =
-7.45058059692383e-09
>> r2 = (-b - sqrt(b*b - 4*a*c))/(2*a)
r2 =
-30000000.001
Again, massive subtractive cancellation eats away at the result. (I seem to recall that was the problem you had in your last question.)
There is a trick you can use. See that the large solution was well estimated, just not the one near zero. So, what happens if you solved for the roots of fliplr(p) using the quadratic formula? How does this solve your problem? What transformation is implicitly done when you do that? (Sorry, but I won't do your homework. I think the above was enough of a hint anyway.)
i think your "real" values might be wrong (or maybe it's a precision thing... I dunno)
a*(valor_real_x1^2)+b*(valor_real_x1)+c
ans =
9.9999e-07
a*(valor_real_x2^2)+b*(valor_real_x2)+c
ans =
-8.4720e+13
A nice formula for this problem:
var q = sqrt(c*a)/b;
var f = .5 + .5 *sqrt(1-4*q*q);
var x1=-b*f/a;
var x2=-c/(f*b);