I have two collections, 1. temporaryCollection, 2. permanentCollection, I would like to take data from temporaryCollection and update in permanentCollection. To see the expected result see updatedPermanentCollection below.
Fields that are taken from Temporary collection and updated in Permanent collection are:
emailAddresses
phoneNumbers
ContactName
ContactNumber
For your info, the fields that are changed in Temporary collection
contacts[0]['emailAddresses']
contacts[0]['ContactName']
contacts[0]["phoneNumbers"]
contacts[0]["ContactNumber"]
Field that are that should not be changed after updation in UpdatedPermanentCollection is
contacts._id
Note: contacts is an Array of objects, for simplicity I have shown just one object.
I am currently using the below query which updates the permanentCollection but also overrides the contacts._id field. I don't want the contacts._id field to be overridden.
Here is my MongoDB Query
db.temporaryCollection.aggregate([
{
$match: {
userID: ObjectId("61d1efea2c0fab00340f47c8"),
},
},
{
$merge: {
into: "permanentCollection",
on: "userID",
whenMatched: "merge",
whenNotMatched: "insert",
},
},
]);
1. temporaryCollection
{
"_id": { "$oid": "61d1f04266289f003452d705" },
"userID": { "$oid": "61d1efea2c0fab00340f47c8" },
"contacts": [
{
"emailAddresses": [
{ "id": "6884", "label": "email1", "email": "addedemail#gmail.com" }
],
"phoneNumbers": [
{
"label": "other",
"id": "4594",
"number": "+918984292930"
},
{
"label": "other",
"id": "4595",
"number": "+911234567890"
}
],
"_id": { "$oid": "61d1f04266289f003452d744" },
"ContactName": "Sample User 1 Name Changed",
"ContactNumber": "+918984292930",
"recordID": "833"
}
],
"userNumber": "+911234567890",
"__v": 7
}
2. permanentCollection
{
"_id": { "$oid": "61d1f04266289f003452d701" },
"userID": { "$oid": "61d1efea2c0fab00340f47c8" },
"contacts": [
{
"emailAddresses": [],
"phoneNumbers": [
{
"label": "other",
"id": "4594",
"number": "+918984292929"
},
{
"label": "other",
"id": "4595",
"number": "+911234567890"
}
],
"_id": { "$oid": "61d1f04266289f003452d722" },
"ContactName": "Sample User 1",
"ContactNumber": "+918984292929",
"recordID": "833"
}
],
"userNumber": "+911234567890",
"__v": 7
}
3. updatedPermanentCollection (Expected result)
{
"_id": { "$oid": "61d1f04266289f003452d701" },
"userID": { "$oid": "61d1efea2c0fab00340f47c8" },
"contacts": [
{
"emailAddresses": [
{ "id": "6884", "label": "email1", "email": "addedemail#gmail.com" }
],
"phoneNumbers": [
{
"label": "other",
"id": "4594",
"number": "+918984292930"
},
{
"label": "other",
"id": "4595",
"number": "+911234567890"
}
],
"_id": { "$oid": "61d1f04266289f003452d722" },
"ContactName": "Sample User 1 Name Changed",
"ContactNumber": "+918984292930",
"recordID": "833"
}
],
"userNumber": "+911234567890",
"__v": 7
}
Try with this aggregation query.
db.temporarCollection.aggreagate(
[
{
"$lookup": {
"from": "permanantCollection",
"let": {
"user_id": "$userID"
},
"pipeline": [
{
"$match": {
"$expr": {
"$eq": [
"$$user_id", "$userID"
]
}
}
}
],
"as": "pcontacts"
}
}, {
"$unwind": {
"path": "$pcontacts",
"preserveNullAndEmptyArrays": true
}
}, {
"$project": {
"contacts": {
"$map": {
"input": "$contacts",
"as": "contact",
"in": {
"tcontact": "$$contact",
"pcontact": {
"$first": {
"$filter": {
"input": "$pcontacts.contacts",
"as": "pcontact",
"cond": {
"$eq": [
"$$pcontact.recordID", "$$contact.recordID"
]
}
}
}
}
}
}
},
"userNumber": 1,
"userID": 1,
"_id": 0
}
}, {
"$project": {
"contacts": {
"$map": {
"input": "$contacts",
"as": "contact",
"in": {
"emailAddresses": "$$contact.tcontact.emailAddresses",
"phoneNumbers": "$$contact.tcontact.phoneNumbers",
"ContactName": "$$contact.tcontact.ContactName",
"ContactNumber": "$$contact.tcontact.ContactNumber",
"recordID": {
"$let": {
"vars": {},
"in": {
"$cond": {
"if": "$$contact.pcontact.recordID",
"then": "$$contact.pcontact.recordID",
"else": "$$contact.tcontact.recordID"
}
}
}
},
"_id": {
"$let": {
"vars": {},
"in": {
"$cond": {
"if": "$$contact.pcontact._id",
"then": "$$contact.pcontact._id",
"else": "$$contact.tcontact._id"
}
}
}
}
}
}
},
"userNumber": 1,
"userID": 1
}
}, {
"$merge": {
"into": "pc",
"on": "userID",
"whenMatched": "replace",
"whenNotMatched": "insert"
}
}
])
It is not a fully optimized query but it works.
Try to add $unset to db query.
db.temporaryCollection.aggregate([
{
$unset: "_id"
},
{
$match: {
userID: ObjectId("61d1efea2c0fab00340f47c8"),
},
},
{
$merge: {
into: "permanentCollection",
on: "userID",
whenMatched: "merge",
whenNotMatched: "insert",
},
},
]);
Related
I have 3 collections as follows:
GroupRoles Collection:
//1
{
"_id": ObjectId("62a384ee0c4dbafc64000fba"),
"name": "GroupRole template 1",
"groupRoles": [
{
"_id": ObjectId("6298503f8a31000024002107"),
"members": [
ObjectId("629e1bb117366c39bc7d78e1")
]
},
{
"_id": ObjectId("629850368a31000024002106"),
"members": [
ObjectId("629ee6d502877d0f93f5dabe"),
ObjectId("629ee6d002877d0f93f5dab8")
]
},
{
"_id": ObjectId("6298502f8a31000024002105"),
"members": [ ]
},
{
"_id": ObjectId("629850288a31000024002104"),
"members": [ ]
},
{
"_id": ObjectId("6298501f8a31000024002103"),
"members": [ ]
},
{
"_id": ObjectId("629850128a31000024002102"),
"members": [ ]
}
]
}
Role Collections:
// 1 {"_id": ObjectId("629850128a31000024002102"), "type": 1, "name": "Role 1",}
// 2 {"_id": ObjectId("6298501f8a31000024002103"), "type": 1, "name": "Role 2",}
// 3 {"_id": ObjectId("629850288a31000024002104"), "type": 1, "name": "Role 3",}
// 4 {"_id": ObjectId("6298502f8a31000024002105"), "type": 1, "name": "Role 4",}
// 5 {"_id": ObjectId("629850368a31000024002106"), "type": 1, "name": "Role 5",}
// 6 {"_id": ObjectId("6298503f8a31000024002107"), "type": 1, "name": "Role 6",}
and User Collection:
// 1 {"_id": ObjectId("629e1bb117366c39bc7d78e1"), "email": "abc1#gmail.com", "name": "user 01"}
// 2 {"_id": ObjectId("629ee6d502877d0f93f5dabe"), "email": "abc2#gmail.com", "name": "user 02"}
// 3 {"_id": ObjectId("629ee6d002877d0f93f5dab8"), "email": "abc3#gmail.com", "name": "user 03"}
How can select GroupRoles with output format like this:
{
"_id": ObjectId("62a384ee0c4dbafc64000fba"),
"name": "GroupRole template 1",
"groupRoles": [
{
"_id": ObjectId("6298503f8a31000024002107"),
"type": 1,
"name": "Role 6",
"members": [
{
"_id": ObjectId("629e1bb117366c39bc7d78e1"),
"email": "abc1#gmail.com",
"name": "user 01"
}
]
},
{
"_id": ObjectId("629850368a31000024002106"),
"type": 1,
"name": "Role 5",
"members": [
{
"_id": ObjectId("629ee6d502877d0f93f5dabe"),
"email": "abc2#gmail.com",
"name": "user 02"
},
{
"_id": ObjectId("629ee6d002877d0f93f5dab8"),
"email": "abc3#gmail.com",
"name": "user 03"
}
]
},
{
"_id": ObjectId("6298502f8a31000024002105"),
"type": 1,
"name": "Role 4",
"members": [ ]
},
{
"_id": ObjectId("629850288a31000024002104"),
"type": 1,
"name": "Role 3",
"members": [ ]
},
{
"_id": ObjectId("6298501f8a31000024002103"),
"type": 1,
"name": "Role 2",
"members": [ ]
},
{
"_id": ObjectId("629850128a31000024002102"),
"type": 1,
"name": "Role 1",
"members": [ ]
}
]
}
I've tried aggregation and lookup, but it didn't get the results I wanted.
here is my aggregation query
The list of members is not in the correct index of groupRoles
[
{
'$lookup': {
'from': 'roles',
'localField': 'groupRoles._id',
'foreignField': '_id',
'as': 'temp_roles'
}
}, {
'$lookup': {
'from': 'users',
'localField': 'groupRoles.members',
'foreignField': '_id',
'as': 'temp_users'
}
}, {
'$addFields': {
'groupRoles': {
'$map': {
'input': '$groupRoles.members',
'as': 'mems',
'in': {
'members': {
'$filter': {
'input': '$temp_users',
'as': 'temu',
'cond': {
'$in': [
'$$temu._id', '$$mems'
]
}
}
}
}
}
}
}
}, {
'$addFields': {
'groupRoles': {
'$map': {
'input': {
'$zip': {
'inputs': [
'$groupRoles', '$temp_roles'
]
}
},
'in': {
'$mergeObjects': '$$this'
}
}
}
}
}, {
'$unset': [
'temp_roles', 'temp_users'
]
}, {
'$facet': {
'metadata': [
{
'$group': {
'_id': null,
'total': {
'$sum': 1
}
}
}
],
'data': []
}
}, {
'$project': {
'data': {
'_id': 1,
'name': 1,
'groupRoles': {
'_id': 1,
'type': 1,
'name': 1,
'members': {
'_id': 1,
'name': 1,
'email': 1
}
}
},
'total': {
'$arrayElemAt': [
'$metadata.total', 0
]
}
}
}
]
please help me find the solution.
Revise your query and thanks for the hints.
The issue is on $zip, which I think this operator is not suitable. You can check the behavior of $zip.
Combine both $addFields stages into one.
Iterate each value in groupRoles and with $mergeObjects for
Current iterate value.
The first match document from the temp_roles array by matching _id.
The document with members array.
db.groupRoles.aggregate([
{
"$lookup": {
"from": "roles",
"localField": "groupRoles._id",
"foreignField": "_id",
"as": "temp_roles"
}
},
{
"$lookup": {
"from": "users",
"localField": "groupRoles.members",
"foreignField": "_id",
"as": "temp_users"
}
},
{
"$addFields": {
"groupRoles": {
"$map": {
"input": "$groupRoles",
"as": "gr",
"in": {
"$mergeObjects": [
"$$gr",
{
$first: {
"$filter": {
"input": "$temp_roles",
"as": "r",
"cond": {
$eq: [
"$$gr._id",
"$$r._id"
]
}
}
}
},
{
"members": {
"$filter": {
"input": "$temp_users",
"as": "mem",
"cond": {
"$in": [
"$$mem._id",
"$$gr.members"
]
}
}
}
}
]
}
}
}
}
},
{
"$unset": [
"temp_roles",
"temp_users"
]
},
])
Sample Mongo Playground
return the order with the user where purchase id: 123, product id: p123 and user and order shipping.mode =2
db={
"orders": [
{
"_id": ObjectId("62155381877d4300196008ef"),
"shipping": {
"mode": 1
},
"products": [],
"user": ObjectId("6186bd3315a342001bd84f42"),
},
{
"_id": ObjectId("6215569b54cc7f0030c44e0f"),
"shipping": {
"mode": 2
},
"user": ObjectId("6186bd3315a342001bd84f43"),
"products": [
{
"id": "p123"
}
],
}
],
"users": [
{
"_id": ObjectId("6186bd3315a342001bd84f43"),
"shipping": {
"mode": 2
},
"name": "user100",
"purchase": [
{
"id": "123"
},
{
"id": "hjhh"
}
],
}
]
}
https://mongoplayground.net/p/IomR8U7Ard-
db.orders.aggregate([
{
"$lookup": {
"from": "users",
"localField": "user",
"foreignField": "_id",
"as": "user"
}
},
{
"$unwind": "$user"
},
{
"$unwind": "$user.purchase"
},
{
"$match": {
"$and": [
{
"shipping.mode": {
"$gt": 0
}
},
]
}
},
{
"$match": {
"$or": [
{
"$and": [
{
"user.shipping.mode": {
"$eq": 2
}
},
{
"user.purchase.id": {
"$eq": "123"
}
},
{
"$expr": {
"$in": [
"p123",
"$products.id"
]
}
}
]
},
]
}
},
])
Let's consider that I have the following documents (ignoring the _id):
[
{
"Id": "Store1",
"Info": {
"Location": "Store1 Street",
"PhoneNumber": 111
},
"MaxItemsPerShelf": 3,
"Shelf": [
{
"Id": "Shelf1",
"Items": [
{
"Id": "Item1",
"Name": "bananas"
},
{
"Id": "Item2",
"Name": "apples"
},
{
"Id": "Item3",
"Name": "oranges"
}
]
},
{
"Id": "Shelf2",
"Items": [
{
"Id": "Item4",
"Name": "cookies"
},
{
"Id": "Item5",
"Name": "chocolate"
}
]
},
{
"Id": "Shelf3",
"Items": []
}
]
},
{
"Id": "Store3",
"Info": {
"Location": "Store2 Street",
"PhoneNumber": 222
},
"MaxItemsPerShelf": 2,
"Shelf": [
{
"Id": "Shelf4",
"Items": [
{
"Id": "Item6",
"Name": "champoo"
},
{
"Id": "Item7",
"Name": "toothpaste"
}
]
},
{
"Id": "Shelf5",
"Items": [
{
"Id": "Item8",
"Name": "chicken"
}
]
}
]
}
]
Given a specific Shelf.Id I want to get the following result ( Shelf.Id = "Shelf2"):
[{
"Info": {
"Location": "Store1 Street",
"PhoneNumber": 111
},
"ItemsNumber": 2,
"ItemsRemaining": 1
}]
Therefore:
ItemsNumberis the $size of Shelf
and
ItemsRemainingis equal to MaxItemsPerShelf $size of Shelf
also I want to copy the value of the Info to the aggregate output.
How can I accomplish this with aggregate? On my efforts I couldn't pass through an iterator that gets the $size of $Shelf.Items
You can use below aggregation
db.collection.aggregate([
{ "$match": { "Shelf.Id": "Shelf2" }},
{ "$replaceRoot": {
"newRoot": {
"$let": {
"vars": {
"shelf": {
"$filter": {
"input": {
"$map": {
"input": "$Shelf",
"in": {
"Id": "$$this.Id",
"count": { "$size": "$$this.Items" }
}
}
},
"as": "ss",
"cond": { "$eq": ["$$ss.Id", "Shelf2"] }
}
}
},
"in": {
"Info": "$Info",
"ItemsNumber": { "$arrayElemAt": ["$$shelf.count", 0] },
"ItemsRemaining": {
"$subtract": [
"$MaxItemsPerShelf",
{ "$ifNull": [
{ "$arrayElemAt": ["$$shelf.count", 0] },
0
]}
]
}
}
}
}
}}
])
How to populate in result of aggregated query in monogdb
Array of followedId
var followeduserId = ["abc","efg","xyz","pqr","acd","rts"];
Feeds Recommended
[
{
"feedsId": "feed1",
"userId": "abc"
},
{
"feedsId": "feed1",
"userId": "efg"
}
]
Feeds collection
[
{
"link": "www.yodo.com",
"recommended": [
"abc",
"efg"
],
"title": "This is my feed7",
"topics": [
"topi1",
"topi2",
"topi3",
"topi4"
]
},
{
"link": "www.yodo.com",
"recommended": [
"abc",
"efg",
"das",
"asd",
"eqw",
"weq"
],
"title": "This is my feed8",
"topics": [
"topi1",
"topi2",
"topi3",
"topi4"
]
}
]
Ran aggregation query
feedsrecommended.aggregate([
{ $match: { userId: { $in: "followersId" }}},
{ $lookup: {
from: "feeds",
localField: "feedsId",
foreignField: "_id",
as: "feedsId"
}},
{ $group: {
"_id": { "feedsId": "$feedsId" },
"count": { "$sum": 1 }
}},
{ $sort: { count: -1 }}
])
result After aggregation
var resultfeeds = [
{
"count": 7,
"id": {
"_id": "feed1",
"link": "www.yodo.com",
"recommended": [
"abc",
"efg",
"xyz",
"pqr",
"acd",
"rts"
],
"title": "This is my feed1",
"topics": [
"topi1",
"topi8",
"topi6",
"topi5"
]
}
},
{
"count": 3,
"id": {
"_id": "feed5",
"link": "www.yodo.com",
"recommended": [
"abc",
"efg",
"acd",
"rts"
],
"title": "This is my feed1",
"topics": [
"topi1",
"topi2",
"topi3",
"topi4"
]
}
},
{
"count": 3,
"id": {
"_id": "feed6",
"link": "www.yodo.com",
"recommended": [
"abc",
"efg",
"xyz",
"pqr"
],
"title": "This is my feed1",
"topics": [
"topi7",
"topi1",
"topi4",
"topi8"
]
}
},
{
"count": 2,
"id": {
"_id": "feed2",
"link": "www.yodo.com",
"recommended": [
"abc",
"acd",
"rts"
],
"title": "This is my feed1",
"topics": [
"topi7",
"topi6",
"topi8"
]
}
},
{
"count": 2,
"id": {
"_id": "feed7",
"link": "www.yodo.com",
"recommended": [
"abc",
"efg"
],
"title": "This is my feed1",
"topics": [
"topi1",
"topi5",
"topi6",
"topi4"
]
}
},
{
"count": 1,
"id": {
"_id": "feed3",
"link": "www.yodo.com",
"recommended": [
"abc",
"asd",
"eqw",
"weq"
],
"title": "This is my feed1",
"topics": [
"topi1",
"topi7",
"topi6",
"topi4"
]
}
},
{
"count": 1,
"id": {
"_id": "feed8",
"link": "www.yodo.com",
"recommended": [
"abc",
"das",
"asd",
"eqw",
"weq"
],
"title": "This is my feed1",
"topics": [
"topi1",
"topi2",
"topi5",
"topi4"
]
}
}
]
I want to populate topics and recommeded userName and image in the result
topic collection
[
{
"topic_name": "tiger"
},
{
"topic_name": "loin"
}
]
user collection
[
{
"name": "deepa",
"profileImg": "www.com/facebook.jpg"
},
{
"name": "nisa",
"profileImg": "www.com/facebook.jpg"
}
]
My last result should be like this
[
{
"count": 2,
"id": {
"_id": "feed2",
"link": "www.yodo.com",
"recommended": [
{
"_id": "abc",
"name": "deepa",
"profileImg": "www.com/facebook.jpg"
},
{
"_id": "acd",
"name": "sigger",
"profileImg": "www.com/facebook.jpg"
},
{
"_id": "rts",
"name": "buster",
"profileImg": "www.com/facebook.jpg"
}
],
"title": "This is my feed1",
"topics": [
{
"_id": "topi6",
"topic_name": "boolena"
},
{
"_id": "topi7",
"topic_name": "mika"
},
{
"_id": "topi8",
"topic_name": "tika"
}
]
}
}
]
You can try below aggregation in mongodb 3.6 and above
Feedsrecommended.aggregate([
{ "$match": { "userId":{ "$in": followersId }}},
{ "$group": {
"_id": "$feedsId",
"count": { "$sum": 1 }
}},
{ "$lookup": {
"from": "feeds",
"let": { "feedsId": "$_id" },
"pipeline": [
{ "$match": { "$expr": { "$eq": [ "$_id", "$$feedsId" ] }}},
{ "$lookup": {
"from": "topics",
"let": { "topics": "$topics" },
"pipeline": [
{ "$match": { "$expr": { "$in": [ "$_id", "$$topics" ] } } }
],
"as": "topics"
}},
{ "$lookup": {
"from": "users",
"let": { "recommended": "$recommended" },
"pipeline": [
{ "$match": { "$expr": { "$in": [ "$_id", "$$recommended" ] } } }
],
"as": "recommended"
}}
],
"as": "feedsId"
}}
])
This question already has answers here:
Find in Double Nested Array MongoDB
(2 answers)
Closed 4 years ago.
I have a document that looks like so:
{
"_id": {
"$oid": "5b1586ccf0c56353e89d330b"
},
"address": {
"street": "123 Street",
"address2": "Address 2",
"city": "Some City",
"state": "MI",
"zip": "12345"
},
"subs": [
{
"invoices": [
{
"address": {
"street": "3061 Pine Ave SW",
"city": "Grandville",
"state": "AK",
"zip": "49418"
},
"lineItem": [
{
"images": [
{
"_id": {
"$oid": "5b1fca54e6ee1d80c463612d"
},
"name": "1528810066348_RSA Logo.jpeg",
"url": "https....",
"uploadDate": {
"$date": "2018-06-12T13:27:46.931Z"
},
"size": 91819
}
],
"_id": {
"$oid": "5b1fca54e6ee1d80c463612c"
},
"desc": "2",
"amt": 2
}
],
"_id": {
"$oid": "5b1fca54e6ee1d80c463612b"
}
}
],
"_id": {
"$oid": "5b1fc7f23b595481d4599f58"
},
"email": "a#a.com",
"scope": "Roof",
},
{
"invoices": [
{
"address": {
"street": "3061 Pine Ave SW",
"city": "Grandville",
"state": "AL",
"zip": "49418"
},
"lineItem": [
{
"images": [
{
"_id": {
"$oid": "5b1fca2fe6ee1d80c463612a"
},
"name": "1528810029700_RSA Stamp.png",
"url": "https....",
"uploadDate": {
"$date": "2018-06-12T13:27:10.403Z"
},
"size": 238113
}
],
"_id": {
"$oid": "5b1fca2fe6ee1d80c4636129"
},
"desc": "1",
"amt": 1
}
],
"_id": {
"$oid": "5b1fca2fe6ee1d80c4636128"
}
},
{
"address": {
"street": "3061 Pine Ave SW",
"city": "Grandville",
"state": "AL",
"zip": "49418"
},
"lineItem": [
{
"images": [
{
"_id": {
"$oid": "5b1fd05b0d1f7185e02e9c40"
},
"name": "1528811607099_error page.PNG",
"url": "https....",
"uploadDate": {
"$date": "2018-06-12T13:53:28.080Z"
},
"size": 224772
}
],
"_id": {
"$oid": "5b1fd05b0d1f7185e02e9c3f"
},
"desc": "3",
"amt": 3
}
],
"_id": {
"$oid": "5b1fd05b0d1f7185e02e9c3e"
}
}
],
"_id": {
"$oid": "5b1fc7f23b595481d4599f55"
},
"email": "b#b.com",
"scope": "Siding",
}
],
"firstName": "",
"lastName": "",
}
My issue is that I want to be able to access a specific invoices of a specific subs.
I am new to Mongo/Mongoose so it is possible I am doing something completely wrong and I would be more than happy with any answer/criticism on how I am approaching this.
-- tweaked answer --
Job.aggregate([
{
$match: {
"_id": mongoose.Types.ObjectId(req.body.jobID)
}
},
{
$unwind: "$subs"
},
{
$match: {
"subs._id": mongoose.Types.ObjectId(req.body.subID)
}
},
{
$unwind: "$subs.invoices"
},
{
$match: {
"subs.invoices._id": mongoose.Types.ObjectId(req.body.invID)
}
},
{
$project: {
"_id": 1,
"subs.invoices": 1
}
}
], function(err, job) {
if (err) throw err;
res.send(job);
});
You can try below aggregation...
Here this is a long process of deconstructing an array using $unwind and rebuild the array using $group
db.collection.aggregate([
{ "$match": { "_id": "1111" } },
{ "$unwind": "$subs" },
{ "$match": { "subs._id": "2222" } },
{ "$unwind": "$subs.invoices" },
{ "$match": { "subs.invoices._id": "3333" } },
{ "$group": {
"_id": {
"_id": "$_id",
"subs": "$subs._id"
},
"firstName": { "$first": "$firstName" },
"lastName": { "$first": "$lastName" },
"address": { "$first": "$address" },
"subs": {
"$first": {
"_id": "$subs._id",
"email": "$subs.email",
"venue": "$subs.venue",
"scope": "$subs.scope"
}
},
"invoices": { "$push": "$subs.invoices" }
}},
{ "$group": {
"_id": "$_id._id",
"firstName": { "$first": "$firstName" },
"lastName": { "$first": "$lastName" },
"address": { "$first": "$address" },
"subs": {
"$push": {
"_id": "$subs._id",
"email": "$subs.email",
"venue": "$subs.venue",
"scope": "$subs.scope",
"invoices": "$invoices"
}
}
}}
])
Or you can do this with $filter aggregation as well
db.collection.aggregate([
{ "$match": { "_id": "5b1586ccf0c56353e89d330b" }},
{ "$unwind": "$subs" },
{ "$match": { "subs._id": "5b1fc7f23b595481d4599f58" }},
{ "$project": {
"address": 1, "firstName": 1, "lastName": 1,
"subs.type": "$subs._id",
"subs.status": "$subs.email",
"subs.code": "$subs.scope",
"subs.invoices": {
"$filter": {
"input": "$subs.invoices",
"as": "invoice",
"cond": {
"$eq": [
"$$invoice._id",
"5b1fca54e6ee1d80c463612b"
]
}
}
}
}},
{ "$group": {
"_id": "$_id",
"address": { "$first": "$address" },
"firstName": { "$first": "$firstName" },
"lastName": { "$first": "$lastName" },
"subs": { "$push": "$subs" }
}}
])