Convert hashref to array of kv pairs - perl

Here's my initial code:
sub my_sub {
my $hash = {
age => 5, # default value for "age" key
#_ # the rest of the "hash" as an array
};
...
}
#used like so:
my_sub("age" => 42, ...);
But I'd like to also support taking in a hashref in addition to an array. So I've tried:
sub my_sub {
my $hash = {
age => 5, # default value for "age" key
ref(#_) eq "" ? #_ : %{$_[0]}
};
...
}
If you call it with an array like before, the ref(#_) eq "" check would be true and the conditional would evaluate to #_ like before. But I can't for the life of me get the false case to work. Currently, it says there are an odd number of elements in the anonymous hash. But when I print out the value of %{$_[0]} I see the expected flattened array of (age, 42, ...) - in other words it looks right in the context of printing it out, but it barfs when it's in the conditional, and I have no idea why. Halp.

I'm not sure why you'd want to use a hash ref in the caller since it just makes the call noisier. But you could use
sub my_sub {
my %args = #_ == 1 ? %{ $_[0] } : #_;
$args{ age } //= 5;
...
}
or
sub my_sub {
my $args = #_ == 1 ? $_[0] : { #_ };
$args->{ age } //= 5; # Warning: modifies caller
...
}
On the surface, the second is faster when provided a hash ref (since it doesn't build a new hash). But, in practice, a new hash is created in the caller each time, cancelling all benefits. On the plus side, that also means there's usually no consequences to modifying the hash (the issue identified by comment in the snippet).

Related

Automatically call hash values that are subroutine references

I have a hash with a few values that are not scalar data but rather anonymous subroutines that return scalar data. I want to make this completely transparent to the part of the code that looks up values in the hash, so that it doesn't have to be aware that some of the hash values may be anonymous subroutines that return scalar data rather than just plain old scalar data.
To that effect, is there any way to have the anonymous subroutines executed when their keys are accessed, without using any special syntax? Here's a simplified example that illustrates the goal and the problem:
#!/usr/bin/perl
my %hash = (
key1 => "value1",
key2 => sub {
return "value2"; # In the real code, this value can differ
},
);
foreach my $key (sort keys %hash) {
print $hash{$key} . "\n";
}
The output I would like is:
perl ./test.pl
value1
value2
Instead, this is what I get:
perl ./test.pl
value1
CODE(0x7fb30282cfe0)
As noted by Oleg, it's possible to do this using various more or less arcane tricks like tie, overloading or magic variables. However, this would be both needlessly complicated and pointlessly obfuscated. As cool as such tricks are, using them in real code would be a mistake at least 99% of the time.
In practice, the simplest and cleanest solution is probably to write a helper subroutine that takes a scalar and, if it's a code reference, executes it and returns the result:
sub evaluate {
my $val = shift;
return $val->() if ref($val) eq 'CODE';
return $val; # otherwise
}
and use it like this:
foreach my $key (sort keys %hash) {
print evaluate($hash{$key}) . "\n";
}
I don't believe that the words that others have written in disapproval of the tie mechanism are warranted. None of the authors seem to properly understand how it works and what core library backup is available
Here's a tie example based on Tie::StdHash
If you tie a hash to the Tie::StdHash class then it works exactly as a normal hash. That means there's nothing left to write except for methods that you may want to override
In this case I've overridden TIEHASH so that I could specify the initialisation list in the same statement as the tie command, and FETCH, which calls the superclass's FETCH and then makes a call to it if it happens to be a subroutine reference
Your tied hash will work as normal except for the change that you have asked for. I hope it is obvious that there is no longer a direct way to retrieve a subroutine reference if you have stored it as a hash value. Such a value will always be replaced by the result of calling it without any parameters
SpecialHash.pm
package SpecialHash;
use Tie::Hash;
use base 'Tie::StdHash';
sub TIEHASH {
my $class = shift;
bless { #_ }, $class;
}
sub FETCH {
my $self = shift;
my $val = $self->SUPER::FETCH(#_);
ref $val eq 'CODE' ? $val->() : $val;
}
1;
main.pl
use strict;
use warnings 'all';
use SpecialHash;
tie my %hash, SpecialHash => (
key1 => "value1",
key2 => sub {
return "value2"; # In the real code, this value can differ
},
);
print "$hash{$_}\n" for sort keys %hash;
output
value1
value2
Update
It sounds like your real situation is with an existing hash that looks something like this
my %hash = (
a => {
key_a1 => 'value_a1',
key_a2 => sub { 'value_a2' },
},
b => {
key_b1 => sub { 'value_b1' },
key_b2 => 'value_b2',
},
);
Using tie on already-populated variables isn't so neat as tying then at the point of declaration and then inserting the values as the data must be copied to the tied object. However the way I have written the TIEHASH method in the SpecialHash class makes this simple to do in the tie statement
If possible, it would be much better to tie each hash before you put data into it and add it to the primary hash
This program ties every value of %hash that happens to be a hash reference. The core of this is the statement
tie %$val, SpecialHash => ( %$val )
which functions identically to
tie my %hash, SpecialHash => ( ... )
in the previous code but dereferences $val to make the syntax valid, and also uses the current contents of the hash as the initialisation data for the tied hash. That is how the data gets copied
After that there is just a couple of nested loops that dump the whole of %hash to verify that the ties are working
use strict;
use warnings 'all';
use SpecialHash;
my %hash = (
a => {
key_a1 => 'value_a1',
key_a2 => sub { 'value_a2' },
},
b => {
key_b1 => sub { 'value_b1' },
key_b2 => 'value_b2',
},
);
# Tie all the secondary hashes that are hash references
#
for my $val ( values %hash ) {
tie %$val, SpecialHash => ( %$val ) if ref $val eq 'HASH';
}
# Dump all the elements of the second-level hashes
#
for my $k ( sort keys %hash ) {
my $v = $hash{$k};
next unless ref $v eq 'HASH';
print "$k =>\n";
for my $kk ( sort keys %$v ) {
my $vv = $v->{$kk};
print " $kk => $v->{$kk}\n"
}
}
output
a =>
key_a1 => value_a1
key_a2 => value_a2
b =>
key_b1 => value_b1
key_b2 => value_b2
There's a feature called "magic" that allows code to be called when variables are accessed.
Adding magic to a variable greatly slows down access to that variable, but some are more expensive than others.
There's no need to make access to every element of the hash magical, just some values.
tie is an more expensive form of magic, and it's not needed here.
As such, the most efficient solution is the following:
use Time::HiRes qw( time );
use Variable::Magic qw( cast wizard );
{
my $wiz = wizard(
data => sub { my $code = $_[1]; $code },
get => sub { ${ $_[0] } = $_[1]->(); },
);
sub make_evaluator { cast($_[0], $wiz, $_[1]) }
}
my %hash;
$hash{key1} = 'value1';
make_evaluator($hash{key2}, sub { 'value2#'.time });
print("$hash{$_}\n") for qw( key1 key2 key2 );
Output:
value1
value2#1462548850.76715
value2#1462548850.76721
Other examples:
my %hash; make_evaluator($hash{key}, sub { ... });
my $hash; make_evaluator($hash->{$key}, sub { ... });
my $x; make_evaluator($x, sub { ... });
make_evaluator(my $x, sub { ... });
make_evaluator(..., sub { ... });
make_evaluator(..., \&some_sub);
You can also "fix up" an existing hash. In your hash-of-hashes scenario,
my $hoh = {
{
key1 => 'value1',
key2 => sub { ... },
...
},
...
);
for my $h (values(%$hoh)) {
for my $v (values(%$h)) {
if (ref($v) eq 'CODE') {
make_evaluator($v, $v);
}
}
}
Yes you can. You can either tie hash to implementation that will resolve coderefs to their return values or you can use blessed scalars as values with overloaded mehods for stringification, numification and whatever else context you want to resolve automatically.
One of perl's special features for just such a use case is tie. This allows you to attach object oriented style methods, to a scalar or hash.
It should be used with caution, because it can mean that your code is doing really strange things, in unexpected ways.
But as an example:
#!/usr/bin/env perl
package RandomScalar;
my $random_range = 10;
sub TIESCALAR {
my ( $class, $range ) = #_;
my $value = 0;
bless \$value, $class;
}
sub FETCH {
my ($self) = #_;
return rand($random_range);
}
sub STORE {
my ( $self, $range ) = #_;
$random_range = $range;
}
package main;
use strict;
use warnings;
tie my $random_var, 'RandomScalar', 5;
for ( 1 .. 10 ) {
print $random_var, "\n";
}
$random_var = 100;
for ( 1 .. 10 ) {
print $random_var, "\n";
}
As you can see - this lets you take an 'ordinary' scalar, and do fruity things with it. You can use a very similar mechanism with a hash - an example might be to do database lookups.
However, you also need to be quite cautious - because you're creating action at a distance by doing so. Future maintenance programmers might well not expect your $random_var to actually change each time you run it, and a value assignment to not actually 'set'.
It can be really useful for e.g. testing though, which is why I give an example.
In your example - you could potentially 'tie' the hash:
#!/usr/bin/env perl
package MagicHash;
sub TIEHASH {
my ($class) = #_;
my $self = {};
return bless $self, $class;
}
sub FETCH {
my ( $self, $key ) = #_;
if ( ref( $self->{$key} ) eq 'CODE' ) {
return $self->{$key}->();
}
else {
return $self->{$key};
}
}
sub STORE {
my ( $self, $key, $value ) = #_;
$self->{$key} = $value;
}
sub CLEAR {
my ($self) = #_;
$self = {};
}
sub FIRSTKEY {
my ($self) = #_;
my $null = keys %$self; #reset iterator
return each %$self;
}
sub NEXTKEY {
my ($self) = #_;
return each %$self;
}
package main;
use strict;
use warnings;
use Data::Dumper;
tie my %magic_hash, 'MagicHash';
%magic_hash = (
key1 => 2,
key2 => sub { return "beefcake" },
);
$magic_hash{random} = sub { return rand 10 };
foreach my $key ( keys %magic_hash ) {
print "$key => $magic_hash{$key}\n";
}
foreach my $key ( keys %magic_hash ) {
print "$key => $magic_hash{$key}\n";
}
foreach my $key ( keys %magic_hash ) {
print "$key => $magic_hash{$key}\n";
}
This is slightly less evil, because future maintenance programmers can use your 'hash' normally. But dynamic eval can shoot the unwary in the foot, so still - caution is advised.
And alternative is to do it 'proper' object oriented - create a 'storage object' that's ... basically like the above - only it creates an object, rather than using tie. This should be much clearer for long term usage, because you won't get unexpected behaviour. (It's an object doing magic, which is normal, not a hash that 'works funny').
You need to identify when a code ref is present, then execute it as an actual call:
foreach my $key (sort keys %hash) {
if (ref $hash{$key} eq 'CODE'){
print $hash{$key}->() . "\n";
}
else {
print "$hash{$key}\n";
}
}
Note that you may consider making all of the hash values subs (a true dispatch table) instead of having some that return non-coderefs and some that return refs.
However, if you define the hash as such, you don't have to do any special trickery when it comes time to use the hash. It calls the sub and returns the value directly when the key is looked up.
key2 => sub {
return "value2";
}->(),
No, not without some ancillary code. You are asking for a simple scalar value and a code reference to behave in the same way. The code that would do that is far from simple and also injects complexity between your hash and its use. You might find the following approach simpler and cleaner.
You can make all values code references, making the hash a dispatch table, for uniform invocation
my %hash = (
key1 => sub { return "value1" },
key2 => sub {
# carry on some processing ...
return "value2"; # In the real code, this value can differ
},
);
print $hash{$_}->() . "\n" for sort keys %hash;
But of course there is a minimal overhead to this approach.

Confusion with checking Hash of Hash of Arrays

I am trying to compare my hash input to valid allowed options in my data structure, and if it's not one of the options then I set the default value for the key. I seem to be missing something here though.
Example of current data structure..
my $opts = {
file => { require => 1 },
head => {
default => 1,
allowed => [0,1],
},
type => {
default => 'foo',
allowed => [qw(foo bar baz)]
},
};
$args is my hash ref ( file => 'file.txt', type => 'foo', head => 1 )
Snippet of what I've tried..
for my $k ( keys %$opts ) {
croak("Argument '$k' is required in constructor call!")
if $opts->{$k}->{require} and !exists $args->{$k};
if (exists $args->{$k}) {
if (grep {!$args->{$k}} #{$opts->{$k}->{allowed}} ) {
$args->{$k} = $opts->{$k}->{default};
}
...
} else {
..set our defaults
$args->{$k} = $opts->{$k}->{default};
}
}
The checking for allowed values is faulty.
The grep function takes a code block and a list. It sets the $_ variable to each element in the list in turn. If the block returns a true value, the element is kept. In scalar context, grep does not return a list of kept elements, but a count.
Your grep block is {!$args->{$k}}. This returns true when $args->{$k} is false and vice versa. The result does not depend on $_, and therefore doesn't check if the argument is one of the allowed values.
To see if the given value is allowed value, you'll have to test for some form of equivalence, e.g.
if (grep { $args->{$k} eq $_ } #{ $opts->{$k}{allowed} }) {
# this is executed when the arg matches an allowed value
} else {
# the arg is not allowed
}
An Excursion To Smart Matching and List::MoreUtils
If you can use a perl > v10, then smart matching is available. This would express above condition as
use 5.010;
$args->{$k} ~~ $opts->{$k}{allowed}
The lengthy table of possible type combinations states that this is roughly equivalent to the grep if the arg is a scalar (string/number), and the allowed arrayref holds only normal scalars as well.
However, smart matching was re-marked as experimantal in v18, and behaviour will likely change soon.
In the meantime, it might be better to stick to explicit grep etc. But we could implement two improvements:
The grep will test all elements, even when a match was already found. This can be inefficient. The first function from List::Util core module has the same syntax as grep, but stops after the first element. If the block matches a value, this value is returned. If no value matches, it returns undef. This makes things complicated when undef might be a valid value, or even when false values may be allowed. But in your case, the grep could be replaced by
use List::Util 'first';
defined first { $_ eq $args->{$k} } #{ $opts->{$k}{allowed} }
The List::MoreUtils module has even more functionality. It provides for example the any function, which corresponds to the mathematical ∃ (there exists) quantifier:
use List::MoreUtils 'any';
any { $_ eq $args->{$k} } #{ $opts->{$k}{allowed} }
This only returns a boolean value. While it may not be as efficient as a plain grep or first, using any is quite self-documenting, and easier to use.
Until now, I have assumed that we'll only ever do string comparision to the allowed values. This sometimes works, but it would be better to specify an explicit mode. For example
croak qq(Value for "$k": "$args->{$k}" not allowed) unless
$opts->{$k}{mode} eq 'str' and any { $args->{$k} eq $_ } #{ $opts->{$k}{allowed} }
or $opts->{$k}{mode} eq 'like' and any { $args->{$k} =~ $_ } #{ $opts->{$k}{allowed} }
or $opts->{$k}{mode} eq 'num' and any { $args->{$k} == $_ } #{ $opts->{$k}{allowed} }
or $opts->{$k}{mode} eq 'smart' and any { $args->{$k} ~~ $_ } #{ $opts->{$k}{allowed} }
or $opts->{$k}{mode} eq 'code' and any { $args->{$k}->($_) } #{ $opts->{$k}{allowed} };
Preventing unknown options
You may or may not want to forbid unknown options in your $args hash. Especially if you consider composability of classes, you may want to ignore unknown options, as a superclass or subclass may need these.
But if you choose to check for wrong options, you could delete those elements you already handled:
my $self = {};
for my $k (keys %$opts) {
my $v = delete $args->{$k};
...; # use $v in the rest of the loop
$self->{$k} = $v;
}
croak "Unknown arguments (" . (join ", ", keys %$args) . ") are forbidden" if keys %$args;
or grep for unknown args:
my #unknown = grep { not exists $opts->{$_} } keys %$args;
croak "Unknown arguments (" . (join ", ", #unknown) . ") are forbidden" if #unknown;
for my $k (keys %$opts) {
...;
}
or you could loop over the combined keys of $args and $opts:
use List::Util 'uniq';
for my $k (uniq keys(%$opts), keys(%$args)) {
croak "Unknown argument $k" unless exists $opts->{$k};
...;
}
Scalar Context
I have assumed that you correctly initialized $args as a hash reference:
my $args = { file => 'file.txt', type => 'foo', head => 1 };
Using parens instead of curlies is syntactically valid:
my $args = ( file => 'file.txt', type => 'foo', head => 1 );
but this doesn't produce a hash. Instead, the => and , behave like the comma operator in C: the left operand is evaluated and discarded. That is, only the last element is kept:
my $args = 1; # equivalent to above snippet.

perl how to reference hash itself

This might seem to be an odd thing to do, but how do I reference a hash while 'inside' the hash itself? Here's what I'm trying to do:
I have a hash of hashes with a sub at the end, like:
my $h = { A => [...], B => [...], ..., EXPAND => sub { ... } };
. I'm looking to implement EXPAND to see if the key C is present in this hash, and if so, insert another key value pair D.
So my question is, how do I pass the reference to this hash to the sub, without using the variable name of the hash? I expect to need to do this to a few hashes and I don't want to keep having to change the sub to reference the name of the hash it's currently in.
What you've got there is some nested array references, not hashes. Let's assume you actually meant that you have something like this:
my $h = { A => {...}, B => {...}, ..., EXPAND() };
In that case, you can't reference $h from within its own definition, because $h does not exist until the expression is completely evaluated.
If you're content to make it two lines, then you can do this:
my $h = { A=> {...}, B => {...} };
$h = { %$h, EXPAND( $h ) };
The general solution is to write a function that, given a hash and a function to expand that hash, returns that hash with the expansion function added to it. We can close over the hash in the expansion function so that the hash's name doesn't need to be mentioned in it. That looks like this:
use strict;
use warnings;
use 5.010;
sub add_expander {
my ($expanding_hash, $expander_sub) = #_;
my $result = { %$expanding_hash };
$result->{EXPAND} = sub { $expander_sub->($result) };
return $result;
}
my $h = add_expander(
{
A => 5,
B => 6,
},
sub {
my ($hash) = #_;
my ($maxkey) = sort { $b cmp $a } grep { $_ ne 'EXPAND' } keys %$hash;
my $newkey = chr(ord($maxkey) + 1);
$hash->{$newkey} = 'BOO!';
}
);
use Data::Dumper;
say Dumper $h;
$h->{EXPAND}->();
say Dumper $h;
Notice that we are creating $h but that the add_expander call contains no mention of $h. Instead, the sub passed into the call expects the hash it is meant to expand as its first argument. Running add_expander on the hash on the sub creates a closure that will remember which hash the expander is associated with and incorporates it into the hash.
This solution assumes that what should happen when a hash is expanded can vary by subject hash, so add_expander takes an arbitrary sub. If you don't need that degree of freedom, you can incorporate the expansion sub into add_expander.
The hash being built (potentially) happens after EXPAND() runs. I would probably use something like this:
$h = EXPAND( { A=>... } )
Where EXPAND(...) returns the modified hashref or a clone if the original needs to remain intact.

How do I pass a hash to subroutine?

Need help figuring out how to do this. My code:
my %hash;
$hash{'1'}= {'Make' => 'Toyota','Color' => 'Red',};
$hash{'2'}= {'Make' => 'Ford','Color' => 'Blue',};
$hash{'3'}= {'Make' => 'Honda','Color' => 'Yellow',};
&printInfo(%hash);
sub printInfo{
my (%hash) = %_;
foreach my $key (keys %_{
my $a = $_{$key}{'Make'};
my $b = $_{$key}{'Color'};
print "$a $b\n";
}
}
The easy way, which may lead to problems when the code evolves, is simply by assigning the default array #_ (which contains all key-value-pairs as an even list) to the %hash which then rebuilds accordingliy. So your code would look like this:
sub printInfo {
my %hash = #_;
...
}
The better way would be to pass the hash as reference to the subroutine. This way you could still pass more parameters to your subroutine.
printInfo(\%hash);
sub PrintInfo {
my %hash = %{$_[0]};
...
}
An introduction to using references in Perl can be found in the perlreftut
You're so very, very close. There is no %_ for passing hashes, it must be passed in #_. Luckily, Hashes are assigned using a list context, so
sub printInfo {
my %hash = #_;
...
}
will make it work!
Also note, using the & in front of the subroutine call has been, in most cases, unnecessary since at least Perl 5.000. You can call Perl subroutines just like in other languages these days, with just the name and arguments. (As #mob points out in the comments, there are some instances where this is still necessary; see perlsub to understand this more, if interested.)
The best way to pass hashes and arrays is by reference. A reference is simply a way to talk about a complex data structure as a single data point -- something that can be stored in a scalar variable (like $foo).
Read up on references, so you understand how to create a reference and dereference a reference in order to get your original data back.
The very basics: You precede your data structure with a backslash to get the reference to that structure.
my $hash_ref = \%hash;
my $array_ref = \#array;
my $scalar_ref = \$scalar; #Legal, but doesn't do much for you...
A reference is a memory location of the original structure (plus a clue about the structure):
print "$hash_ref\n";
Will print something like:
HASH(0x7f9b0a843708)
To get the reference back into a useable format, you simply put the reference into the correct sigil in front:
my %new_hash = %{ $hash_ref };
You should learn about using references since this is the way you can create extremely complex data structures in Perl, and how Object Oriented Perl works.
Let's say you want to pass three hashes to your subroutine. Here are the three hashes:
my %hash1 = ( this => 1, that => 2, the => 3, other => 4 );
my %hash2 = ( tom => 10, dick => 20, harry => 30 );
my %hash3 = ( no => 100, man => 200, is => 300, an => 400, island => 500 );
I'll create the references for them
my $hash_ref1 = \%hash1;
my $hash_ref2 = \%hash2;
my $hash_ref3 = \%hash3;
And now just pass the references:
mysub ( $hash_ref1, $hash_ref2, $hash_ref3 );
The references are scalar data, so there's no problem passing them to my subroutine:
sub mysub {
my $sub_hash_ref1 = shift;
my $sub_hash_ref2 = shift;
my $sub_hash_ref3 = shift;
Now, I just dereference them, and my subroutine can use them.
my %sub_hash1 = %{ $sub_hash_ref1 };
my %sub_hash2 = %{ $sub_hash_ref2 };
my %sub_hash3 = %{ $sub_hash_ref3 };
You can see what a reference is a reference to by using the ref command:
my $ref_type = ref $sub_hash_ref; # $ref_type is now equal to "HASH"
This is useful if you want to make sure you're being passed the correct type of data structure.
sub mysub {
my $hash_ref = shift;
if ( ref $hash_ref ne "HASH" ) {
croak qq(You need to pass in a hash reference);
}
Also note that these are memory references, so modifying the reference will modify the original hash:
my %hash = (this => 1, is => 2, a => 3 test => 4);
print "$hash{test}\n"; # Printing "4" as expected
sub mysub ( \%hash ); # Passing the reference
print "$hash{test}\n"; # This is printing "foo". See subroutine:
sub mysub {
my $hash_ref = shift;
$hash_ref->{test} = "foo"; This is modifying the original hash!
}
This can be good -- it allows you to modify data passed to the subroutine, or bad -- it allows you to unintentionally modify data passed to the original subroutine.
I believe you want
my %hash;
$hash{'1'}= {'Make' => 'Toyota','Color' => 'Red',};
$hash{'2'}= {'Make' => 'Ford','Color' => 'Blue',};
$hash{'3'}= {'Make' => 'Honda','Color' => 'Yellow',};
printInfo(%hash);
sub printInfo{
my %hash = #_;
foreach my $key (keys %hash){
my $a = $hash{$key}{'Make'};
my $b = $hash{$key}{'Color'};
print "$a $b\n";
}
}
In the line printInfo(%hash) the %hash is expanded to a list with the alternating key-value pairs.
In printInfo, the #_ is this list that, and assigned to %hash it creates again the keys with their corresponding value from the alternating elements in the list.
You can pass them as
The argument list do_hash_thing( %hash )
A reference to the hash in the argument list
`do_hash_thing( #args_before, \%hash, #args_after )
As a reference by prototype, working like keys and other hash operators.
The list works like so:
sub do_hash_thing {
my %hash = #_;
...
}
do_hash_thing( %hash );
This also allows you to "stream" hash arguments as well:
do_hash_thing( %hash_1, %hash_2, parameter => 'green', other => 'pair' );
By reference works like this:
sub do_hash_thing {
my $hash_ref = shift;
...
}
do_hash_thing( \%hash, #other_args );
Here by prototype (\%#). The prototype makes perl look for a hash in the first argument and pass it by reference.
sub do_hash_thing (\%#) {
my $hash_ref = shift;
...
}
do_hash_thing( %hash => qw(other args) );
# OR
do_hash_thing %hash => qw(other args);
Caveat: prototypes don't work on methods.

Perl, check if pair exists in hash of hashes

In Perl, I have a hash of hashes created with a loop similar to the following
my %HoH
for my $i (1..10) {
$HoH{$a}{$b} = $i;
}
$a and $b are variables that do have some value when the HoH gets filled in. After creating the HoH, how can I check if a particular pair ($c, $d) exists in the HoH? The following does not work
if (defined $HoH{$c}{$d}) {...}
because if $c does not exist in HoH already, it will be created as a key without a value.
Writing
if (defined $HoH{$c}{$d}) {...}
will "work" insomuch as it will tell you whether or not $HoH{$c}{$d} has a defined value. The problem is that if $HoH{$c} doesn't already exist it will be created (with an appropriate value) so that $HoH{$c}{$d} can be tested. This process is called "autovivification." It's convenient when setting values, e.g.
my %hoh;
$hoh{a}{b} = 1; # Don't need to set '$hoh{a} = {}' first
but inconvenient when retrieving possibly non-existent values. I wish that Perl was smart enough to only perform autovivification for expressions used as lvalues and short-circuit to return undef for rvalues but, alas, it's not that magical. The autovivification pragma (available on CPAN) adds the functionality to do this.
To avoid autovivification you need to test the intermediate values first:
if (exists $HoH{$c} && defined $HoH{$c}{$d}) {
...
}
use Data::Dumper;
my %HoH;
$HoH{A}{B} = 1;
if(exists $HoH{C} && exists $HoH{C}{D}) {
print "exists\n";
}
print Dumper(\%HoH);
if(exists $HoH{C}{D}) {
print "exists\n";
}
print Dumper(\%HoH);
Output:
$VAR1 = {
'A' => {
'B' => 1
}
};
$VAR1 = {
'A' => {
'B' => 1
},
'C' => {}
};
Autovivification is causing the keys to be created. "exists" in my second example shows this so the first example checks both keys individually.
Several ways:
if ( $HoH{$c} && defined $HoH{$c}{$d} ) {...}
or
if ( defined ${ $HoH{$c} || {} }{$d} ) {...}
or
no autovivification;
if (defined $HoH{$c}{$d}) {...}
or
use Data::Diver;
if ( defined Data::Diver::Dive( \%HoH, $c, $d ) ) {...}
You have to use the exists function
exists EXPR
Given an expression that specifies an
element of a hash, returns true if the
specified element in the hash has ever
been initialized, even if the
corresponding value is undefined.
Note that the EXPR can be arbitrarily
complicated as long as the final
operation is a hash or array key
lookup or subroutine name:
if (exists $ref->{A}->{B}->{$key}) { }
if (exists $hash{A}{B}{$key}) { }
My take:
use List::Util qw<first>;
use Params::Util qw<_HASH>;
sub exists_deep (\[%$]#) {
my $ref = shift;
return unless my $h = _HASH( $ref ) // _HASH( $$ref )
and defined( my $last_key = pop )
;
# Note that this *must* be a hash ref, for anything else to make sense.
return if first { !( $h = _HASH( $h->{ $_ } )) } #_;
return exists $h->{ $last_key };
}
You could also do this recursively. You could also create a descent structure allowing intermediate and even terminal arrayref with just a little additional coding.