Opensearch: Data node costs - opensearch

I don't understand the costs of having 1 data node vs having 2 or more data nodes.
Will I have the same cost regardless of the number of nodes?
If I have 2 data nodes, that means that I will have double the cost of the instances?
Thanks

Depends on the instance size: i3.2xlarge would be ~2x more expensive than i3.xlarge.
If you use one instance size then yes, 2 nodes would be 2x more expensive than 1 node but you'll get more resilience (if one node goes down your cluster can still get updates and serve data) and rolling restarts.
Though, Opensearch requires an odd number of nodes for master election to work reliably so 3 smaller nodes might be better than 2 larger ones.

Related

Can we have more than 1024 nodes in Couchbase?

Disclaimer : Just started NoSQL.
As per my understanding, in case of multiple nodes, 1024 V Buckets will be divided symmetrically inbetween available nodes.
Say in case of 2 nodes system, 512 V Buckets will be residing in each node.
Similarly in case of 4 nodes, 256 V Buckets will be residing on each nodes.
On Extrapolating same distribution, How the system will behave in case 1025th Node is being added to the cluster?
Couchbase has a fixed number of vbuckets, they will always be 1024. This also means that the maximum number of nodes a couchbase cluster could have is 1024, and this 10x bigger than the biggest clusters we have so far. (Yes, some clients have clusters with ~100 nodes in it )
The advantage of sharding data into 1024 vbuckets is that you won't ever need to reshard your data (an expensive operation in mongo, for instance). It also makes couchbase super easy to scale out ( as we just need to move some buckets to the new node) and also super easy to recover from a node failure (as we just need to guarantee the correct number of replicas of each bucket)

How databricks do auto scaling for a cluster

I have a databricks cluster setup with auto scale upto 12 nodes.
I have often observed databricks scaling cluster from 6 to 8, then 8 to 11 and then 11 to 14 nodes.
So my queries -
1. Why is it picking up 2-3 nodes to be added at one go
2. Why auto scale is triggered as I see not many jobs are active or heavy processing on cluster. CPU usage is pretty low.
3. While auto scaling why is it leaving notebook in waiting state
4. Why is it taking up to 8-10 min to auto scale
Thanks
I am trying to investigate why data bricks is auto scaling cluster when its not needed
When you create a cluster, you can either provide a fixed number of workers for the cluster or provide a minimum and maximum number of workers for the cluster.
When you provide a fixed size cluster, Databricks ensures that your cluster has the specified number of workers. When you provide a range for the number of workers, Databricks chooses the appropriate number of workers required to run your job. This is referred to as autoscaling.
With autoscaling, Databricks dynamically reallocates workers to account for the characteristics of your job. Certain parts of your pipeline may be more computationally demanding than others, and Databricks automatically adds additional workers during these phases of your job (and removes them when they’re no longer needed).
Autoscaling makes it easier to achieve high cluster utilization, because you don’t need to provision the cluster to match a workload. This applies especially to workloads whose requirements change over time (like exploring a dataset during the course of a day), but it can also apply to a one-time shorter workload whose provisioning requirements are unknown. Autoscaling thus offers two advantages:
Workloads can run faster compared to a constant-sized
under-provisioned cluster.
Autoscaling clusters can reduce overall costs compared to a
statically-sized cluster.
Databricks offers two types of cluster node autoscaling: standard and optimized.
How autoscaling behaves
Autoscaling behaves differently depending on whether it is optimized or standard and whether applied to an interactive or a job cluster.
Optimized
Scales up from min to max in 2 steps.
Can scale down even if the cluster is not idle by looking at shuffle
file state.
Scales down based on a percentage of current nodes.
On job clusters, scales down if the cluster is underutilized over
the last 40 seconds.
On interactive clusters, scales down if the cluster is underutilized
over the last 150 seconds.
Standard
Starts with adding 4 nodes. Thereafter, scales up exponentially, but
can take many steps to reach the max.
Scales down only when the cluster is completely idle and it has been
underutilized for the last 10 minutes.
Scales down exponentially, starting with 1 node.

consensus algorithm: what will happen if an odd cluster becomes even because of a node failure?

Consensus algorithm (e.g. raft) requires the cluster contains an odd number of nodes to avoid the split-brain problem.
Say I have a cluster of 5 nodes, what will happen if only one node fails? The cluster has 4 nodes now, which breaks the odd number rule, will the cluster continue to behave right?
One solution is to drop one more node to make the cluster contain only 3 nodes, but what if the previously failed node comes back? then the cluster has 4 nodes again, and we have to bring the afore-dropped node back in order to keep the cluster odd.
Do implementations of the consensus algorithm handle this problem automatically, or I have to do it in my application code (for example, drop a node)?
Yes, the cluster will continue to work normally. A cluster of N nodes, and if N is odd (N = 2k + 1), can handle k node fails. As long as a majority of nodes is alive, it can work normally. If one node fails, and we still have the majority, everything is fine. Only when you lose majority of nodes, you have a problem.
There is no reason to force the cluster to have an odd number of nodes, and implementations don't consider this as a problem and thus don't handle it (drop nodes).
You can run a consensus algorithm on an even number of nodes, but it usually makes more sense to have it odd.
3 node cluster can handle 1 node fail (the majority is 2 nodes).
4 node cluster can handle 1 node fail (the majority is 3 nodes).
5 node cluster can handle 2 node fail (the majority is 3 nodes).
6 node cluster can handle 2 node fail (the majority is 4 nodes).
I hope this makes it more clear why it makes more sense to have the cluster size to be an odd number, it can handle the same number of node failures with fewer nodes in the cluster.

Choosing the compute resources of the nodes in the cluster with horizontal scaling

Horizontal scaling means that we scale by adding more machines into the pool of resources. Still, there is a choice of how much power (CPU, RAM) each node in the cluster will have.
When cluster managed with Kubernetes it is extremely easy to set any CPU and memory limit for Pods. How to choose the optimal CPU and memory size for cluster nodes (or Pods in Kubernetes)?
For example, there are 3 nodes in a cluster with 1 vCPU and 1GB RAM each. To handle more load there are 2 options:
Add the 4th node with 1 vCPU and 1GB RAM
Add to each of the 3 nodes more power (e.g. 2 vCPU and 2GB RAM)
A straightforward solution is to calculate the throughput and cost of each option and choose the cheaper one. Are there any more advanced approaches for choosing the compute resources of the nodes in a cluster with horizontal scalability?
For this particular example I would go for 2x vCPU instead of another 1vCPU node, but that is mainly cause I believe running OS for anything serious on a single vCPU is just wrong. System to behave decently needs 2+ cores available, otherwise it's too easy to overwhelm that one vCPU and send the node into dust. There is no ideal algorithm for this though. It will depend on your budget, on characteristics of your workloads etc.
As a rule of thumb, don't stick to too small instances as you have a bunch of stuff that has to run on them always, regardless of their size and the more node, the more overhead. 3x 4vCpu+16/32GB RAM sounds like nice plan for starters, but again... it depends on what you want, need and can afford.
The answer is related to such performance metrics as latency and throughput:
Latency is a time interval between sending request and receiving response.
Throughput is a request processing rate (requests per second).
Latency has influence on throughput: bigger latency = less throughput.
If a business transaction consists of multiple sequential calls of the services that can't be parallelized, then compute resources (CPU and memory) has to be chosen based on the desired latency value. Adding more instances of the services (horizontal scaling) will not have any positive influence on the latency in this case.
Adding more instances of the service increases throughput allowing to process more requests in parallel (if there are no bottlenecks).
In other words, allocate CPU and memory resources so that service has desired response time and add more service instances (scale horizontally) to handle more requests in parallel.

Hierarchical quorums in Zookeeper

I am trying to understand hierarchical quorums in Zookeeper. The documentation here
gives an example but I am still not quiet sure I understand it. My question is, if I have a two node Zookeeper cluster (I know it is not recommended but let's consider it for the sake of this example)
server.1 and
server.2,
can I have hierarchical quorums as follows:
group.1=1:2
weight.1=2
weight.2=2
With the above configuration:
Even if one node goes down I still have enough votes (?) to
maintain a quorum ? is this a correct statement ?
What is the zookeeper quorum value here (2 - for two nodes or 3 -
for 4 votes)
In a second example, say I have:
group.1=1:2
weight.1=2
weight.2=1
In this case if server.2 goes down,
Should I still have sufficient votes (2) to maintain a quorum ?
As far as I understand from the documentation, When we give weight to a node, then the majority varies from being the number of nodes. For example, if there are 10 nodes and 3 of the nodes have been given 70 percent of weightage, then it is enough to have those three nodes active in the network. Hence,
You don't have enough majority since both nodes have equal weight of 2. So, if one node goes down, we have only 50 percent of the network being active. Hence quorum is not achieved.
Since total weight is 4. we require 70 percent of 4 which would be 2.8 so closely 3, since we have only two nodes, both needs to be active to meet the quorum.
In the second example, it is clear from the weights given that 2/3 of the network would be enough (depends on the configuration set by us, I would assume 70 percent always,) if 65 percent is enough to say that network is alive, then the quorum is reached with one node which has weightage 2.