MongoDB general install question about replica set - mongodb

I have a server where I have a mongodb database of 150Gb
There are 8 databases in it with intensive write activity (as I'm storing tweets)
I notice some latency when reading data and am wondering if it would be interesting to switch to a replica set, considering I only have one machine.
Idea would be to have mongo running on 3 different ports, and each pointing to a different folder.
Would there be a benefit? I imagine that having 3 mongo instances with one dedicated to writing would be better but I'm not sure.
If yes, how should I configure the replica set (priority? arbiter?...)
Thanks for your help

To improve your read performance :
Add indexes if you don't have yet or optimize the current ones.
Add better project stages in your queries (to fetch only the data that you need)
Add more RAM
Add more wiredTiger cache
Improve filesystem performance (reduce swappiness, mount with noatime, etc.)
If your queries have a lot of aggregation + sorting add more CPU.
Disable your WiredTiger FTDC
Mount the journal to separate partition.
Distribute the 8x databases in 8x different disks (ssd/xfs preferred)
You can switch to replicaSet when:
You need redundancy (for production you always need)
Your use case allow read preference from SECONDARY (then adding more members benefits read performance since you can distribute reads to SECONDARY members)
Advice:
Considering you have write intensive applications sounds like a better option to switch to sharded cluster, adding more shards will distribute the writes better. Of course for 150GB (such small size), you need to decide if is worth the effort to do this if it is only for testing :)
Something like this sounds nice to me:
2x mongos + 3x CSRS + 3x shards (3x members in each replicaSet/shard)

Related

Mirror Production Mongo Data for Analytics

I have a Mongo cluster that backs an application that I use in production. It's very important to my business and clustered across a number of boxes to optimize for speed and redundancy. I'd like to make the data in said cluster available for running analytical queries and enqueued tasks, but I definitely don't want these to harm production performance. Is it possible to just mirror all of my data against a single box I throw into the cluster with some special tag that I can then use for analytics? It's fine if it's slow. I just want it to be cheap and not to affect production read/write speeds.
Since you're talking about redundancy, I assume you have a replica set.
In that case you can use a hidden replica set member to perform the calculations you need.
Just keep in mind that the member count must be odd. If you add a node you might need to also add an arbiter. Or maybe you can just hide one of the already existing members.
If you are looking for a way to increase querying speed having a lot of data, you have to look might look into sharding with mongodb. Basically what it does is dividing your big amount of data into small shards and stores them on different machines.
If you are looking to increase redundancy (in order to make backup or to be able to do offline processing without touching primary servers) you have to look into replication with mongodb. If you are doing replication, keep in mind that the data on the replicas will be always lagging behind a primary (nothing to worry about, but just need to know this fact to decide can you allow read from the replicas). As it was pointed by Rafa, hidden replica sets are well suited for backup and offline data processing. They will still be able to get all the data from primary (with small lag), but are invisible to secondary reads and can not become primary.
There is a nice mongodb course which is talking in depth about replication and sharding, so may be it is worth listening and trying it.

MongoDB - how to best achieve active/active configuration?

I have an application which is very low on writes. I'm therefore interested in deploying a mongo installation which maximizes the read throughput for the hardware I have (3 database servers in one location). I don't really care for redundancy (backups), but would like automatic failover. Additionally, I'm fine with "eventual consistency", and don't mind if data which isn't the latest data is returned.
I've looked into both sharding and replica sets, and as far as I can tell, I don't really need to use sharding as its benefits suit more for applications with many writes.
I therefore went ahead and installed a replica set on the three servers I have, and I then set the reading preference to "Nearest", as that would allow reads to take place on any server.
The problem is, I later read that the client is "sticky" and basically once it has chosen a "nearest" mongo server, it's not likely to change it. Besides, even if it were to "check for nearest" again, it'll probably choose the same one over. This pretty much results in an active/passive configuration, without any load-balancing. I do have two application servers, so if they choose different mongo servers, it might work ok, but say I wanted to have more than 3 mongo servers in the replica set, then any servers besides specific two would be passive.
Basically my question is, what's the best way to have an active/active configuration for my deployment? All I want is for requests to go to free mongo servers rather than busy ones.
One way to force this which I thought of is to create three sharded-clusters (each server participating in all three), where each server is the primary in one of these clusters - but this is still not optimal, because besides the relative complexity involved in this configuration, this also doesn't guarantee complete load balancing (for example, in case all requests at a given moment happen to go to one specific shard).
What's the right way to achieve what I want? If it's not possible to achieve this kind of load balancing with mongo, would you recommend that I go with the sharded-clusters solution?
As you already suspected, scaling reads is not a "one size fits all" problem. Everything will depend on your data, your access patterns, your requirements and probably a few other things only you can determine.
In a nutshell, the main thing to consider is why a single server can't handle your read load. If it's because of the size of your data set and the size of your indexes then sharding your data across three shards will reduce the RAM requirements of each of them (or to put it another way will give you the combined RAM of all three systems). As long as you pick a good shard key (one that will distribute the load approximately evenly across all the systems) you will get almost three times the throughput on targeted queries.
If the main requirement for your reads is to reduce as much as possible the latency of reading the data, then a replica set can serve your purposes well as reading from the "nearest" node will reduce the network round-trip time without changing the duration of the operation on the MongoDB server. This assumes that your writes are infrequent enough or that your application has tolerance of possibly stale data.

In Mongo what is the difference between sharding and replication?

Replication seems to be a lot simpler than sharding, unless I am missing the benefits of what sharding is actually trying to achieve. Don't they both provide horizontal scaling?
In the context of scaling MongoDB:
replication creates additional copies of the data and allows for automatic failover to another node. Replication may help with horizontal scaling of reads if you are OK to read data that potentially isn't the latest.
sharding allows for horizontal scaling of data writes by partitioning data across multiple servers using a shard key. It's important to choose a good shard key. For example, a poor choice of shard key could lead to "hot spots" of data only being written on a single shard.
A sharded environment does add more complexity because MongoDB now has to manage distributing data and requests between shards -- additional configuration and routing processes are added to manage those aspects.
Replication and sharding are typically combined to created a sharded cluster where each shard is supported by a replica set.
From a client application point of view you also have some control in relation to the replication/sharding interaction, in particular:
Read preferences
Write concerns
Consider you have a great music collection on your hard disk, you store the music in logical order based on year of release in different folders.
You are concerned that your collection will be lost if drive fails.
So you get a new disk and occasionally copy the entire collection keeping the same folder structure.
Sharding >> Keeping your music files in different folders
Replication >> Syncing your collection to other drives
Replication is a mostly traditional master/slave setup, data is synced to backup members and if the primary fails one of them can take its place. It is a reasonably simple tool. It's primarily meant for redundancy, although you can scale reads by adding replica set members. That's a little complicated, but works very well for some apps.
Sharding sits on top of replication, usually. "Shards" in MongoDB are just replica sets with something called a "router" in front of them. Your application will connect to the router, issue queries, and it will decide which replica set (shard) to forward things on to. It's significantly more complex than a single replica set because you have the router and config servers to deal with (these keep track of what data is stored where).
If you want to scale Mongo horizontally, you'd shard. 10gen likes to call the router/config server setup auto-sharding. It's possible to do a more ghetto form of sharding where you have the app decide which DB to write to as well.
Sharding
Sharding is a technique of splitting up a large collection amongst multiple servers. When we shard, we deploy multiple mongod servers. And in the front, mongos which is a router. The application talks to this router. This router then talks to various servers, the mongods. The application and the mongos are usually co-located on the same server. We can have multiple mongos services running on the same machine. It's also recommended to keep set of multiple mongods (together called replica set), instead of one single mongod on each server. A replica set keeps the data in sync across several different instances so that if one of them goes down, we won't lose any data. Logically, each replica set can be seen as a shard. It's transparent to the application, the way MongoDB chooses to shard is we choose a shard key.
Assume, for student collection we have stdt_id as the shard key or it could be a compound key. And the mongos server, it's a range based system. So based on the stdt_id that we send as the shard key, it'll send the request to the right mongod instance.
So, what do we need to really know as a developer?
insert must include a shard key, so if it's a multi-parted shard key, we must include the entire shard key
we've to understand what the shard key is on collection itself
for an update, remove, find - if mongos is not given a shard key - then it's going to have to broadcast the request to all the different shards that cover the collection.
for an update - if we don't specify the entire shard key, we have to make it a multi update so that it knows that it needs to broadcast it
Whenever you're thinking about sharding or replication, you need to think in the context of writers/update operations. If you don't need to scale writes then replications, as it fairly simpler, is a good choice for you.
On the other hand, if you workload mostly updates/writes then at some point you'll hit a write bottleneck. If write request comes Mongo blocks other writes request. Those write request blocks until the first request will be done. If you want to scale this writes and want parallelize it then you need to implement sharding.
Just to put this somewhere...
The most basic way to run mongo is as standalone server.
You write a config (file or cli options)
initiate the server using mongod
For this picture, I didn't include the "client". Check the next one.
A replica set is a set of servers initialized exactly as above with a different config file.
To link them, we connect to one of them, and initialize the replica set mode.
They will mirror each other (in the most common configuration). This system guarantees high availability of data.
The initialization of the replica set is represented in the red border box.
Sharding is not about replicating data, but about fragmenting data.
Each fragment of data is called chunk and goes to a different shard. shard = each replica set.
"main" server, running mongos instead of mongod. This is a router for queries from the client.
Obvious: The trade-off is a more complex architecture.
Novelty: configuration server (again, a different config file).
There is much more to add, but apart from the words the pictures hold much the same.
Even mongoDB recommends to study your case carefully before going sharding. Vertical scaling (vs) is probably a good idea at least once before horizontal scaling (hs).
vs is done upgrading hardware (cpu, ram, etc). hs is needs more computers (but could be cheap computers).
Both replication and sharding can be used (individually or together) for horizontal scaling of a MongoDB installation.
Sharding is MongoDB's solution for meeting the demands of data growth. Sharding stores data records across multiple servers to provide faster throughput on read and write queries, particularly for very large data sets.
Any of the servers in the sharded cluster can respond to a read or write operation, which greatly speeds up query responses.
Replication is MongoDB's solution for providing stability, backup, and disaster recovery to a MongoDB installation. This process copies and synchronizes the replica data set across multiple servers. This prevents downtime if one server goes offline.
Any of the secondary servers can respond to read queries, but only the primary server will perform write operations. The results of the write operation will then be propagated out to the secondary servers.
Scenario 1: Fault-Tolerance
In this scenario, the user is storing billing data in a MongoDB installation. This data is mission-critical to the user's business, and needs to be available 24/7, even if a server crashes or is taken offline.
MongoDB replication is the best solution for this user. With replication, the entire data set is mirrored on multiple servers. If a server fails or is taken offline, the other servers in the cluster take over.
Scenario 2: High Performance
In this scenario, the user is running a social networking site which is run from a MongoDB database. As the social network grows, the MongoDB data set has grown along with it. The user is seeing query times and page loads increase beyond an acceptable point. It is critical that the user's MongoDB installation receives a major performance boost.
Setting up a sharded MongoDB cluster is the best solution for this user. The sharded cluster will break up the user's data set and store parts of it on separate secondary servers. Each secondary server can respond to read or write queries on its portion of the data, which greatly increases the installation's response time
MongoDB Atlas is a Database as a service in could. It support three major cloud providers such as Azure , AWS and GCP. In cloud environment , we usually talk about high availability and scalability. In Atlas “clusters”, can be either a replica set or a sharded cluster.
These two address high availability and scalability features of our cloud environment.
In general Cluster is a group of servers used to achieve a specific task. So sharded clusters are used to store data in across multiple machines to meet the demand of data growth. As the size of the data increases, a single machine may not be sufficient to store the data nor provide an acceptable read and write throughput. Sharded clusters supports the horizontal scalability of the underling cloud environment.
A replica set in MongoDB is a group of mongod processes that maintain the same data set. Replica sets provide redundancy and high availability, and are the basis for all production deployments.In a replica, one node is a primary node that receives all write operations. All other instances, such as secondaries, apply operations from the primary so that they have the same data set. Replica set mainly focus on the availability of data.
Please check the documentation
Thank You.

MongoDB Sharding On One Machine

Does it make sense to implement mongodb sharding with say 100 shards on one beefier machine just to achieve higher concurrenct write into the database as I am told, there is a global lock for each monogod.exe process? Assuming that is possible, will that aproach give me higher write concurrency?
Running multiple mongods on a machine is not a good idea. Every one of the mongod processes will try to use all the available memory, forcing other mongod's memory mapped pages out of memory. This will create an enormous amount of swapping in most cases.
The global database lock is generally not a problem as is demonstrated in: http://blog.pythonisito.com/2011/12/mongodbs-write-lock.html
Only use one mongod per machine (but it's fine to add a mongos or config server as well), unless it's for some simple testing.
cheers,
Derick
I totally disagree. We run 8 shards per box in our setup. It consists of two head nodes each with two other machines for replication. 6 boxes total. These are beefy boxes with about 120GB of RAM, 32 Cores and 2TB each. By having 8 shards per box (we could go higher by the way this is set at 8 for historic purposes) we make sure we utilize the CPU efficiently. The RAM sorts itself out. You do have to watch the metrics and make sure you aren't paging too much but with SSD drives (which we have) if you do spill onto the disk drives it isn't too bad.
The only use case where I found running several mongod on the same server was to increase replication speed on high latency connection.
As highlighted by Derick, the write lock is not really your issue when running mongodb.
To answer your question : yes you can demonstrate mongo scaling with several instance per machine (4 instances per server sems to be enough) if your test does not involve too much data (otherwise page out will dramatically decrase your performance, I have already tested it)
However, instances will still compete for resources. All you will manage to do is to shift the database lock issue to a resource lock issue.
Yes, you can and in fact that's what we do for 50+ mil write-heavy database. Just make sure all your indexes per mongod fit into the RAM and there's room for growth and maintenance.
However, there's a small trade-off: Depending on what your target QPS is, this kind of sharing requires machines with more horsepower, whereas sharding on a single machine will not and in most cases you can do away with commodity, cheaper hardware.
Whatever the case is, do the series of performance tests (ageinst IO, Network, PQS etc) and establish your baseline carefully and consider SSD drives for storage and this may sound biased, but Linux XFS storage is also something to consider.

MongoDb - Utilizing multi CPU server for a write heavy application

I am currently evaluating MongoDb for our write heavy application...
Currently MongoDb uses single thread for write operation and also uses global lock whenever it is doing the write... Is it possible to exploit multiple CPU on a multi-CPU server to get better write performance? What are your workaround for global write lock?
No, it is still recommended to use sharding to utilize multiple CPU cores.
As stated in the FAQ
Sharding improves concurrency by distributing collections over multiple mongod instances, allowing shard servers (i.e. mongos processes) to perform any number of operations concurrently to the various downstream mongod instances.
Each mongod instance is independent of the others in the shard cluster and uses the MongoDB readers-writer lock). The operations on one mongod instance do not block the operations on any others.
Sharding on a single box has its issues, as one user stated in the mongodb-user mailing list
After some significant experimentation, I've found a single MongoDB shard daemon CANNOT use more than one CPU. On a 24 CPU box, performance scales up until we hit about 8 shards, then another limit kicks in.
So right now, the easy solution is to shard.
Yes, normally sharding is done across servers. However, it is completely possible to shard on a single box. You simply fire up the shards on different ports and provide them with different folders. Here's a sample configuration of 2 shards on one box.
The MongoDB team recognizes that this is kind of sub-par, and I know from talking to them that they're looking at better ways to do this.
Obviously once you get multiple shards on one box and increase your write threads, you will have to be wary of disk IO. In my experience, I've been able to saturate disks with a single write thread. If your inserts/updates are relatively simple, you may find that extra write threads don't do anything. (Map-Reduces are the exception here, sharding definitely helps there)