Power series with array input - matlab

I want to do the following in Matlab:
i is the imaginary unit
r is a vector of length n: [r(1),...,r(n)]
phi is a 1x300 double, i.e. [phi(1),...,phi(300)]
sum(r(1:n).*(1i.^(1:n))./factorial(1:n))
This would work if there was no phi. But how can I implement the phi here?
sum(r(1:n).*((phi*1i).^(1:n))./factorial(1:n))
results in:
Matrix dimensions must agree.
The expected output is the same size as phi. This code would achieve what I want but I want n to be dynamic so the looping is not feasible:
if n==1
R = r(1) * ( i * phi )
elseif n==2
R = r(1) * ( i * phi ) + r(2) * ( i * phi ).^2 / 2;
elseif n==3
R = r(1) * ( i * phi ) + r(2) * ( i * phi ).^2 / 2 + r(3) * ( i * phi ).^3 / 6;
...

You need to transpose phi, and then transpose your result back at the end, this looks something like
s = sum(r(1:n).*((phi.'*1i).^(1:n))./factorial(1:n),2).'
note the .' after phi and at the end to transpose. I've also included ,2 in the sum to sum along the 2nd dimension.
This relies on implicit expansion to create an intermediate matrix.
i.e. the operations between phi.' (a column array) and your row arrays (r(1:n), (1:n), and factorial(1:n)) are evaluated element-wise, making a matrix which is 300 x n. Then we sum in the 2nd dimension (sum(__,2)) to get a 300x1 output, which is finally transposed back to a 1x300 output to match your original phi.

Given your example, you could do
ind_end = min(n, length(phi))
sum(r(1:ind_end).*((phi(1:ind_end)*1i).^(1:ind_end))./factorial(1:ind_end))
This works for any n by avoiding the indexing to go beyond the length of phi.

Related

I keep getting an error trying implementing midpoint method solving ODE

I am trying to implement Midpoint formulas y[n+1/2] = y[n] + h/2 f (x[n], y[n]) and y[n+1] = y[n] + h *f (x[n] + h/2, y[n + 1/2])
so it solves ODE using midpoint method.
My function is
function [ x, y ] = Midpoint_ODE ( f, xRange, yInitial, numSteps )
% f = name of file with function
% xrange Interval
% x(1) first meaning of x
% x(2) second meaning of x
x=zeros(numSteps+1,1);
x(1) = xRange(1);
h = ( xRange(2) - xRange(1) ) / numSteps; % calculated step size
y(1,:) = transpose(yInitial);
for n = 1 : numSteps
y(n+0.5,:)= (y(n) + (h * 0.5)*(transpose(feval( f, x(n), y(n)))));
y(n+1,:) = y(n,:) + h * transpose(feval(f, x(n)+ (h/2), y(n+0.5,:))); %evaluating the function
end
But I get an error :
**Index in position 1 is invalid. Array indices must be positive integers or logical values.
Error in Midpoint_ODE (line 11)Index in position 1 is invalid. Array indices must be positive integers or logical values.
Error in Midpoint_ODE (line 11)**
I checked it a couple of times, and can't get what's wrong and if I missed some logical piece.
You do not need to keep the half-step value. Thus the easiest is to not have in in the list of values
for n = 1 : numSteps
yhalfstep = (y(n,:) + (h * 0.5)*(transpose(feval( f, x(n), y(n,:)))));
y(n+1,:) = y(n,:) + h * transpose(feval( x(n)+ (h/2), yhalfstep));
end
Also remember that in matlab and similar, a single-index access to a multi-dimensional array gives back the element of the flattened array (column first). That is, in a=[ 1,2;3,4;5,6] you get from a(3) the number 5 as the 3rd element in the first column, while a(3,:) gives the 3rd row [5,6].

Laguerre's method to obtain poly roots (Matlab)

I must write using Laguerre's method a piece of code to find the real and complex roots of poly:
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1
I have little doubt. I did the algorithm in the matlab, but 3 out of 5 roots are the same and I don't think that is correct.
syms X %Declearing x as a variabl
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1; %Equation we interest to solve
n=5; % The eq. order
Pd1 = diff(P,X,1); % first differitial of f
Pd2 = diff(P,X,2); %second differitial of f
err=0.00001; %Answear tollerance
N=100; %Max. # of Iterations
x(1)=1e-3; % Initial Value
for k=1:N
G=double(vpa(subs(Pd1,X,x(k))/subs(P,X,x(k))));
H=G^2 - double(subs(Pd2,X,x(k))) /subs(P,X,x(k));
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = max(D1,D2);
a=n/D;
x(k+1)=x(k)-a
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
break
end
end
output (roots of polynomial):
x =
0.0010 + 0.0000i 0.1434 + 0.4661i 0.1474 + 0.4345i 0.1474 + 0.4345i 0.1474 + 0.4345i
What you actually see are all the values x(k) which arose in the loop. The last one, 0.1474 + 0.4345i is the end result of this loop - the approximation of the root which is in your given tolerance threshold. The code
syms X %Declaring x as a variable
P = X^5 - 5 * X^4 - 6 * X^3 + 6 * X^2 - 3 * X + 1; %Polynomial
n=5; %Degree of the polynomial
Pd1 = diff(P,X,1); %First derivative of P
Pd2 = diff(P,X,2); %Second derivative of P
err = 0.00001; %Answer tolerance
N = 100; %Maximal number of iterations
x(1) = 0; %Initial value
for k = 1:N
G = double(vpa(subs(Pd1,X,x(k)) / subs(P,X,x(k))));
H = G^2 - double(subs(Pd2,X,x(k))) / subs(P,X,x(k));
D1 = (G + sqrt((n-1) * (n * H-G^2)));
D2 = (G - sqrt((n-1) * (n * H-G^2)));
D = max(D1,D2);
a = n/D;
x(k+1) = x(k) - a;
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
fprintf('Initial value %f, result %f%+fi', x(1), real(x(k)), imag(x(k)))
break
end
end
results in
Initial value -2.000000, result -1.649100+0.000000i
If you want to get other roots, you have to use other initial values. For example one can obtain
Initial value 10.000000, result 5.862900+0.000000i
Initial value -2.000000, result -1.649100+0.000000i
Initial value 3.000000, result 0.491300+0.000000i
Initial value 0.000000, result 0.147400+0.434500i
Initial value 1.000000, result 0.147400-0.434500i
These are all zeros of the polynomial.
A method for calculating the next root when you have found another one would be that you divide through the corresponding linear factor and use your loop for the resulting new polynomial. Note that this is in general not very easy to handle since rounding errors can have a big influence on the result.
Problems with the existing code
You do not implement the Laguerre method properly as a method in complex numbers. The denominator candidates D1,D2 are in general complex numbers, it is inadvisable to use the simple max which only has sensible results for real inputs. The aim is to have a=n/D be the smaller of both variants, so that one has to look for the D in [D1,D2] with the larger absolute value. If there were a conditional assignment as in C, this would look like
D = (abs(D_1)>abs(D2)) ? D1 : D2;
As that does not exist, one has to use commands with a similar result
D = D1; if (abs(D_1)<abs(D2)) D=D2; end
The resulting sequence of approximation points is
x(0) = 0.0010000
x(1) = 0.143349512707684+0.466072958423667i
x(2) = 0.164462212064089+0.461399841949893i
x(3) = 0.164466373475316+0.461405404094130i
There is a point where one can not expect the (residual) polynomial value at the root approximation to substantially decrease. The value close to zero is obtained by adding and subtracting rather large terms in the sum expression of the polynomial. The accuracy lost in these catastrophic cancellation events can not be recovered.
The threshold for polynomial values that are effectively zero can be estimated as the machine constant of the double type times the polynomial value where all coefficients and the evaluation point are replaced by their absolute values. This test serves in the code primarily to avoid divisions by zero or near-zero.
Finding all roots
One approach is to apply the method to a sufficiently large number of initial points along some circle containing all the roots, with some strict rules for early termination at too slow convergence. One would have to make the list of the roots found unique, but keep the multiplicity,...
The other standard method is to apply deflation, that is, divide out the linear factor of the root found. This works well in low degrees.
There is no need for the slower symbolic operations as there are functions that work directly on the coefficient array, such as polyval and polyder. Deflation by division with remainder can be achieved using the deconv function.
For real polynomials, we know that the complex conjugate of a root is also a root. Thus initialize the next iteration with the deflated polynomial with it.
Other points:
There is no point in the double conversions as at no point there is a conversion into the single type.
If you don't do anything with it, it makes no sense to create an array, especially not for Err.
Roots of the example
Implementing all this I get a log of
x(0) = 0.001000000000000+0.000000000000000i, |Pn(x(0))| = 0.99701
x(1) = 0.143349512707684+0.466072958423667i, |dx|= 0.48733
x(2) = 0.164462212064089+0.461399841949893i, |dx|=0.021624
x(3) = 0.164466373475316+0.461405404094130i, |dx|=6.9466e-06
root found x=0.164466373475316+0.461405404094130i with value P0(x)=-2.22045e-16+9.4369e-16i
Deflation
x(0) = 0.164466373475316-0.461405404094130i, |Pn(x(0))| = 2.1211e-15
root found x=0.164466373475316-0.461405404094130i with value P0(x)=-2.22045e-16-9.4369e-16i
Deflation
x(0) = 0.164466373475316+0.461405404094130i, |Pn(x(0))| = 4.7452
x(1) = 0.586360702193454+0.016571894375927i, |dx|= 0.61308
x(2) = 0.562204173408499+0.000003168181059i, |dx|=0.029293
x(3) = 0.562204925474889+0.000000000000000i, |dx|=3.2562e-06
root found x=0.562204925474889+0.000000000000000i with value P0(x)=2.22045e-16-1.33554e-17i
Deflation
x(0) = 0.562204925474889-0.000000000000000i, |Pn(x(0))| = 7.7204
x(1) = 3.332994579372812-0.000000000000000i, |dx|= 2.7708
root found x=3.332994579372812-0.000000000000000i with value P0(x)=6.39488e-14-3.52284e-15i
Deflation
x(0) = 3.332994579372812+0.000000000000000i, |Pn(x(0))| = 5.5571
x(1) = -2.224132251798332+0.000000000000000i, |dx|= 5.5571
root found x=-2.224132251798332+0.000000000000000i with value P0(x)=-3.33067e-14+1.6178e-15i
for the modified code
P = [1, -2, -6, 6, -3, 1];
P0 = P;
deg=length(P)-1; % The eq. degree
err=1e-05; %Answer tolerance
N=10; %Max. # of Iterations
x=1e-3; % Initial Value
for n=deg:-1:1
dP = polyder(P); % first derivative of P
d2P = polyder(dP); %second derivative of P
fprintf("x(0) = %.15f%+.15fi, |Pn(x(0))| = %8.5g\n", real(x),imag(x), abs(polyval(P,x)));
for k=1:N
Px = polyval(P,x);
dPx = polyval(dP,x);
d2Px = polyval(d2P,x);
if abs(Px) < 1e-14*polyval(abs(P),abs(x))
break % if value is zero in relative accuracy
end
G = dPx/Px;
H=G^2 - d2Px / Px;
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = D1;
if abs(D2)>abs(D1) D=D2; end % select the larger denominator
a=n/D;
x=x-a;
fprintf("x(%d) = %.15f%+.15fi, |dx|=%8.5g\n",k,real(x),imag(x), abs(a));
if abs(a) < err*(err+abs(x))
break
end
end
y = polyval(P0,x); % check polynomial value of the original polynomial
fprintf("root found x=%.15f%+.15fi with value P0(x)=%.6g%+.6gi\n", real(x),imag(x),real(y),imag(y));
disp("Deflation");
[ P,R ] = deconv(P,[1,-x]); % division with remainder
x = conj(x); % shortcut for conjugate pairs and clustered roots
end

Finding the odd point in a dataset without using loops

I am given a set of points (p1,q1) (p2,q2) ... (p20,q20) which satisfy the function q = 1/(ap + b)^2 except that one of these does not satisfy the given relation. The values of a and b are not given to me. All I have with me is two inputs p and q as arrays. I need to find the index of the point which does not satisfy the given relation.
The way I proceeded to solve is to find the values of a and b using the first two pairs (p1,q1) and (p2,q2) and check if the remaining points satisfy the function for the solved values of a and b. The results will be stored in a logical matrix. I wish to make use of the logical matrix to pick out the odd pair, but unable to proceed further.
Specifically, the challenge is to make use of vectorization in MATLAB to find the odd point, instead of resorting to for-loops. I think that I will have to first search for the only logical zero in any of the row. In that case, the column index of that zero will fetch me the odd point. But, if there are more than one zeros in all 4 rows, then the odd point is either of the first two pairs. I need help in translating this to efficient code in MATLAB.
Please note that vectors p and q have been named as x and y in the below code.
function [res, sol] = findThePair(x, y)
N = length(x);
syms a b
vars = [a,b];
eqns = [y(1) - 1/(a*x(1) + b)^2 == 0; y(2) - 1/(a*x(2) + b)^2];
[solA, solB] = solve(eqns,vars);
sol = [double(solA) double(solB)]; %solution of a & b (total 4 possibilites)
xTest = x(3:end); % performing check on remaining points
yTest = y(3:end);
res = zeros(4, N-2); % logical matrix to store the results of equality check
for i = 1:4
A = sol(i,1); B = sol(i, 2);
res(i, :) = [yTest == 1./(A*xTest + B).^2]; % perform equality check on remaining points
end
Let's do some maths up front, to avoid needing loops or vectorisation. At most this leaves us with half a dozen function evaluations, and we only need 5 points.
q = 1 / (a*p + b)^2
% ->
sqrt(q) * ( a*p + b ) = 1
% ->
a = ( 1 - b*sqrt(q) ) / ( p * sqrt(q) )
% Sub in some points (1 and 2) ->
a1 = ( 1 - b*sqrt(q1) ) / ( p1 * sqrt(q1) )
a2 = ( 1 - b*sqrt(q2) ) / ( p2 * sqrt(q2) )
% a1 and a2 should be the same ->
( 1 - b*sqrt(q1) ) * ( p2 * sqrt(q2) ) = ( 1 - b*sqrt(q2) ) * ( p1 * sqrt(q1) )
% Rearrange ->
b = ( p2*sqrt(q2) - p1*sqrt(q1) ) / ( (p2-p1)*sqrt(q1)*sqrt(q2) )
We have two unknowns, a and b. All we need are two points to create simultaneous equations. I'll use the following logic
Choose (pm, qm) and (pn, qn) with any m ~= n.
Calculate a and b using the above equation.
test whether (pr, qr) fits with the calculated a and b.
If it fits, we know all three of these must be on the curve, and we have a and b.
If it doesn't fit, we know either point m, n, or r is the outlier. Return to step (1) with two other points, the calculated a and b must be correct, as we've not fitted to the outlier.
Here is some code to implement this:
% Random coeffs, keep things unknown
a = rand*10;
b = rand*10;
% Set up our data
p = 1:20;
q = 1 ./ (a*p + b).^2;
% Create an outlier
q( 3 ) = q( 3 ) + 1;
% Steps as described
% 1.
p1 = p(1); p2 = p(2);
q1 = q(1); q2 = q(2);
% 2.
bGuess = ( p2*sqrt(q2) - p1*sqrt(q1) ) / ( (p2-p1)*sqrt(q1)*sqrt(q2) );
aGuess = ( 1 - bGuess*sqrt(q1) ) / ( p1 * sqrt(q1) );
% 3.
p3 = p(3);
q3Guess = 1 / ( aGuess*p3 + bGuess )^2;
tol = 1e-7; % Use tolerance rather than == comparison to avoid float issues
if abs( q3Guess - q(3) ) < tol
% success
aFit = aGuess;
bFit = bGuess;
else
% p1, p2 or p3 is an outlier! Repeat using other points
% If there's known to be only one outlier, this should give the result
p1 = p(4); p2 = p(5);
q1 = q(4); q2 = q(5);
bFit = ( p2*sqrt(q2) - p1*sqrt(q1) ) / ( (p2-p1)*sqrt(q1)*sqrt(q2) );
aFit = ( 1 - bFit*sqrt(q1) ) / ( p1 * sqrt(q1) );
end
% Validate
fprintf( 'a is valid: %d, b is valid: %d\n', abs(a-aFit)<tol, abs(b-bFit)<tol )
I don't really understand how you were trying to solve this and what do syms (i.e. symbolic variables) have to do with this, so I'll show you how I would solve this problem.
Since we're essentially looking for an outlier, we might as well convert the problem to something that's easier to work with. For this reason, instead of using q as-is, I'm going to invert it: this way, we'd be dealing with an equation of a parabola - which is easy.
Next, knowing that our points should lie on a parabola, we can fit the equation of the parabola (or equivalently - find the coefficients of the polynomial that describes the relation of the input to the output). The polynomial is a^2*x^2+2*a*b*x+b^2, and so the coefficients are {a^2, 2*a*b, b^2}.
Since the majority of the points (19 out of 20) lie on the same parabola, the outlier will always have a larger error, which would make it stand out, no matter how close it is to the parabola (within the limitations of machine precision) - you can see an extreme example of this in the code below.
Fitting of a parabola is performed using polynomial interpolation (see also: Vandermonde matrix).
function I = q55241683()
%% Generate the ground truth:
TRUE_A = 2.3;
TRUE_B = -pi;
IDX_BAD = 5;
p = 1:0.04:1.76;
q = (TRUE_A * p + TRUE_B).^-2;
q(IDX_BAD) = (1-1E-10)*q(IDX_BAD); % notice just how close this is to being valid
%% Visualize dataset:
% figure(); plot(p,q.^-1);
%% Solve
I = findThePair(p, q.^-1);
%% Test
if IDX_BAD == I
disp('Great success!');
else
disp('Complete failure!');
end
end
function I = findThePair(x,y)
% Fit a parabola to {x vs. y^-1}
P = x(:).^(2:-1:0)\y(:); %alternatively: P = polyfit(x,y.^-1,2)
% Estimate {a,b} (or {-a,-b})
est_A = sqrt(P(1));
est_B = P(2)/(2*est_A);
% Compute the distances of the points from the fit (residuals), find the biggest:
[~,I] = max( abs(y - (est_A*x + est_B).^2) );
end

expectation maximization algorithm matlab out of memory error

I am implementing Expectation Maximization algorithm in matlab. Algorithm is operating on 214096 x 2 data matrix and While computing probabilities, there is multiplication of ( 214096 x 2 ) * (2 x 2) * ( 2 x 214096 ) matrices, which is resulting in error of out of memory in matlab. Is there a way to fix this problem?
Equation
Matlab Code:
enter image description here D = size(X,2); % dimension
N = size(X,1); % number of samples
K = 4; % number of Gaussian Mixture components ( Also number of clusters )
% Initialization
p = [0.2, 0.3, 0.2, 0.3]; % arbitrary pi, probabilities of clusters, apriori probability of cluster
[idx,mu] = kmeans(X,K); % initial means of the components, theta is mu and variance
% compute the covariance of the components
sigma = zeros(D,D,K);
for k = 1:K
tempmat = X(idx==k,:);
sigma(:,:,k) = cov(tempmat); % Sigma j
sigma_det(k) = det(sigma(:,:,k));
end
% calculate x-mu
for k=1: K
check=length( X(idx == k,1))
for lidx = 1: length( X(idx == k,1))
cidx = find( idx == k) ;
Xmu(cidx(lidx),:) = X(cidx(lidx),:) - mu(k,:); %( x-mu ) calculation on cluster level
end
end
% compute P(Cj|x; theta(t)), and take log to simplified calculation
%Eq 14.14 denominator
denom = 0;
for k=1:K
calc_sigma_1_2 = sigma_det(k)^(-1/2);
calc_x_mu = Xmu(idx == k,:);
calc_sigma_inv = inv(sigma(:,:,k));
calc_x_mu_tran = calc_x_mu.';
factor = calc_sigma_1_2 * exp (-1/2 * calc_x_mu * calc_sigma_inv * calc_x_mu_tran ) * p(k);
denom = denom + factor;
end
for k =1:K
calc_sigma_1_2 = sigma_det(k)^(-1/2);
calc_x_mu = Xmu(idx == k,:);
calc_sigma_inv = inv(sigma(:,:,k));
calc_x_mu_tran = calc_x_mu.';
factor = calc_sigma_1_2 * exp (-1/2 * calc_x_mu_tran * calc_sigma_inv * calc_x_mu ) * p(k);
pdf(k) = factor/denom;
end
%%%% Equation 14.14 ends
It seems that you tried to apply vector based equation by simply substituting vector for matrix, this is not how it works
(x - mu).' * Inv(sigma) * (x-mu)
is supposed to be mahalanobis norm of (x-mu), and you want to obtain this value per each row of matrix X, thus
(X - mu).' * Inv(sigma) =: A <- this is ok, this results in N x d matrix
and now you have to do point-wise multiplication of A with (X - mu), not a dot product, and finally sum over second axis (columns), this way you end up with N element vector, each containing a mahalanobis norm of corresponding row from X.

Writing Own fft2() Function on MATLAB

I want to write my own 2 Dimensional DFT function with reduced loops.
What I try to implement is Discrete Fourier Transform:
Using the separability property of transform (actually exponential function), we can write this as multiplication of two 1 dimensional DFT. Then, we can calculate the exponential terms for rows (the matrix wM below) and columns (the matrix wN below) of transform. Then, for summation process we can multiply them as "F = wM * original_matrix * wN"
Here is the code I wrote:
f = imread('cameraman.tif');
[M, N, ~] = size(f);
wM = zeros(M, M);
wN = zeros(N, N);
for u = 0 : (M - 1)
for x = 0 : (M - 1)
wM(u+1, x+1) = exp(-2 * pi * 1i / M * x * u);
end
end
for v = 0 : (N - 1)
for y = 0 : (N - 1)
wN(y+1, v+1) = exp(-2 * pi * 1i / N * y * v);
end
end
F = wM * im2double(f) * wN;
The first thing is I dont want to use 2 loops which are MxM and NxN times running. If I used a huge matrix (or image), that would be a problem. Is there any chance to make this code faster (for example eliminating the loops)?
The second thing is displaying the Fourier Transform result. I use the codes below to display the transform:
% // "log" method
fl = log(1 + abs(F));
fm = max(fl(:));
imshow(im2uint8(fl / fm))
and
% // "abs" method
fa = abs(F);
fm = max(fa(:));
imshow(fa / fm)
When I use the "abs" method, I see only black figure, nothing else. What is wrong with "abs" method you think?
And the last thing is when I compare the transform result of my own function with MATLAB' s fft2() function', mine displays darker figure than MATLAB' s result. What am I missing here? Implementation misktake?
The transform result of my own function:
The transform result of MATLAB fft2() function:
I am happy you solved your problem but unfortunately you answer is not completely right. Indeed it does the job, but as I commented, im2double will normalize everything to 1, therefore showing the scaled result you have. What you want (if you are looking for performance) is not doing im2doubleand then multiply by 255, but directly casting to double().
You can eliminate loops by using meshgrid.
For example:
M = 1024;
tic
[ mX, mY ] = meshgrid( 0 : M - 1, 0 : M - 1 );
wM1 = exp( -2 * pi * 1i / M .* mX .* mY );
toc
tic
for u = 0 : (M - 1)
for x = 0 : (M - 1)
wM2( u + 1, x + 1 ) = exp( -2 * pi * 1i / M * x * u );
end
end
toc
all( wM1( : ) == wM2( : ) )
The timing on my system was:
Elapsed time is 0.130923 seconds.
Elapsed time is 0.493163 seconds.