This is more of a design/architecture question.
We have a microservice A (MSA) with multiple instances (say 2) running of it behind LB.
The purpose of this microservice is to get the messages from Kafka topic and send to end users/clients. Both instances use same consumer group id for a particular client/user so as messages are not duplicated. And we have 2 (or =#instances) partitions of Kafka topic
End users/clients connect to LB to fetch the message from MSA. Long polling is used here.
Request from client can land to any instance. If it lands to MSA1, it will pull the data from kafka partion1 and if it lands to MSA2, it will pull the data from partition2.
Now, a producer is producing the messages, we dont have high messages count. So, lets say producer produce msg1 and it goes to partition1. End user/client will not get this message unless it's request lands to MSA1, which might not happen always as there are other requests coming to LB.
We want to solve this issue. We want that client gets the message near realtime.
One of the solution can be having a distributed persistent queue (e.g. ActiveMQ) where both MSA1 and MSA2 keep on putting the messages after reading from Kafka and client just fetch the message from queue. But this will cause separate queue for every end-user/client/groupid.
Is this a good solution, can we go ahead with this? Anything that we should change here. We are deploying our system on AWS, so if any AWS managed service can help here e.g. SNS+SQS combination?
Some statistics:
~1000 users, one group id per user
2-4 instances of microservice
long polling every few seconds (~20s)
average message size ~10KB
Broadly you have three possible approaches:
You can dispense with using Kafka's consumer group functionality and allow each instance to consume from all partitions.
You can make the instances of each service aware of each other. For example, an instance which gets a request which can be fulfilled by another instance will forward the request there. This is most effective if the messages can be partitioned by client on the producer end (so that a request from a given client only needs to be routed to an instance). Even then, the consumer group functionality introduces some extra difficulty (rebalances mean that the consumer currently responsible for a given partition might not have seen all the messages in the partition). You may want to implement your own variant of the consumer group coordination protocol, only on rebalance, the instance starts from some suitably early point regardless of where the previous consumer got to.
If you can't reliably partition by client in the producer (e.g. the client is requesting a stream of all messages matching arbitrary criteria) then Kafka is really not going to be a fit and you probably want a database (with all the expense and complexity that implies).
Related
I am trying to understand how Kafka can be used for real time notification. Let's say I have a kafka topic for alerting purposes. This topic is used by various services to send updates to the users.
There are 10 instances of notification service running and consuming messages from the topic.
Online users would be distributed among 10 instances. For ex: User1 might be connected to Instance 8 with a websocket connection.
So how to ensure that users are notified correctly? That is, how to ensure that only Instance8 is processing the message for the User1.?
This problem needs to be addressed through multiple angles - let's look at each one...
First - the consumer side...
You'll need as many partitions as there are consumer application instances i.e. the notification service - in your case you've got 10 instances so 10 partitions (or a multiple of 10) to the topic. This will ensure none of the service instances are left idle. Also, they'll need to be a part of the same consumer group. Now, there are a few different partition assignment approaches available and you might need to look into these to find out the one that suits your situation - here's a good reference article.
An example - If you've got 100 users and user-1 to user-10 must be handled by notification-service-1, then StickyAssignor might suit you best.
Alternatively, you could even write your custom partition assignor and the reference article mentioned above does provide some information on this as well
Second - the producer side...
The producer applications writing data to the given Kafka topic should ensure that they send data related to a particular user to a certain partition.
As Kafka messages are made up of key-value pairs, you'll need to make sure that the keys are NOT null. The best would be to use some user-related-information as the key - this way you can make sure that messages in any partition are consumed by the designated consumer instance.
Lastly, please note that I've left out the part on which users (socket connections) are mapped to which notification service instance as it is beyond Kafka and I'm not sure if that part is designed to be strict or not.
=== Assume everything from consumer point of view ===
I was reading couple of Kafka articles and I saw that the number of partitions is coupled to number of micro-service instances.... Ex: If I say 1topic 1partition for my serviceA.. Producer pushes message to topicT1, partitionP1, and from consumerSide(ServiceA1) I can read from t1,p1. If I spin new pod(ServiceA2) to have highThroughput then second instance will never receive any message because Kafka/ZooKeeper assigns id to each Consumer and partition1 is already taken by serviceA1. So serviceA2++ stays idle... To avoid such a hassle Kafka recommends to add more partition, so that number of consumers can be increased/decreased based on need.
I was also able to test through commandLine and service2 never consumed any message. If I shut service1 then service2 was able to pick new message... So if I spin more pod then FailSafe/Availability increases but throughput is same always...
Is my assumption is correct. Am I missing anything. Now I feel like any standard messaging will have the same problem...How to extend message-oriented systems itself.
Every topic has a partition, by default it comes with only one partition if you don't define the partition count value. In your case, you have a consumer group that consists of two consumers. Every consumer read the log from the partition. In your case, first consumer read the log from the first partition(we have the only partition), and for second consumer there will be no partition to the consumer the data so it become idle. Once first consumer gets down then only the second consumer starts reading the data from the first partition from the last committed offset.
Please check below blogs and videos. It explains the topic, consumer, and consumer group in kafka.
https://www.javatpoint.com/apache-kafka-consumer-and-consumer-groups
http://cloudurable.com/blog/kafka-architecture-consumers/index.html
https://docs.confluent.io/platform/current/clients/consumer.html
https://www.youtube.com/watch?v=lAdG16KaHLs
I hope this will give you idea about the consumer and consumer group.
A broad solution to this is to decouple consumption of a message (i.e. receiving a message from Kafka and perhaps deserializing it and validating that it conforms to the schema) and processing it (interpreting the message). If the consumption is simple enough, being limited to no more instances consuming than there are partitions need not constrain.
One way to accomplish this is to have a Kafka consumption service which sends an HTTP request (perhaps through a load balancer or whatever) to a processing service which has arbitrarily many members.
Note that depending on what you're using Kafka for, there may be a requirement that certain messages always be in the same partition as one another in order to ensure that they get handled in a deterministic order (since ordering across partitions is not guaranteed). A typical example of this would be if the messages are change events for a particular record. If you're accomplishing this via some hash of the message key (or a portion of the key if using a custom partitioner), then simply changing the number of partitions might not be viable (you would need to introduce some sort of migration or have the producers know which records have to be routed to the old partitions and only route to the new partitions if the record has never been seen before).
We just started replacing messaging with Kafka.
In a traditional MQ there will be a cluster and 1orMQ will be there inside.
So the MQ cluster/co-ordinator service will deliver the message to clients.
Now there can be 10 services/clients which can consume message from single MQ.
So if there are 10 messages in MQ then each service/consumer/client can read/process 1 message
Now this case is not possible in Kafka which I understood now as per design
To achieve similar functionality in Kafka I have add equal or more number of partition as client/consumer/pods.
I have the following situation:
I have 5 instances of the same service, all in the same kafka consumer group. One of them has a websocket connection to the client (the graphql subscription). I use graphql-java and Spring Boot.
When that connection is opened, I produce events from any of the 5 instances (with a message key defined so they go to the same partition and ordered) and I need for all those events to be consumed by the same instance that opened that connection. Not by the other 4.
Even if the partition assignment plays in my favor, a reassignment can by done at any time, leaving me without luck
My implementation is using reactor-kafka but I think it's just an implementation detail.
The options I see are:
Start to listen on that topic with a new group id each time, so that service always receives the messages from that topic (but the 5 in the other group id too)
Create a new topic for each websocket connection, so only the producer knows that topic (but the topic id should be sent in the kafka events so that the producers of those events know where to publish them)
If I receive the message and I'm not the one with the connection, don't ACK it. But this would make things slow and seems hacky
Start using something different altogether like Redis PubSub to receive all messages in all consumers and check for the connection.
I see there's an implementation for node but I don't see how it is solving the problem.
A similar question explains how to program a subscription but doesn't talk about this distributed thing.
Is the cleanest approach any of the one I suggested? Is there an approach with Kafka that I'm not seeing? Or am I misunderstanding some piece?
I ended up using 1 consumer group id per listener with a topic specifically for those events.
I'm trying to implement a request/reply pattern with Kafka. I am working with named services and unnamed clients that send messages to those services, and clients may expect a reply. Many (10s-100s) of clients may interact with a single service, or consumer group of services.
Strategy one: filtering messages
The first thought was to have two topics per service - the "HelloWorld" service would consume the "HelloWorld" topic, and produce replies back to the "HelloWorld-Reply" topic. Clients would consume that reply topic and filter on unique message IDs to know what replies are relevant to them.
The drawback there is it seems like it might create unnecessary work for clients to filter out a potentially large amount of irrelevant messages when many clients are interacting with one service.
Strategy two: ephemeral topics
The second idea was to create a unique ID per client, and send that ID along with messages. Clients would consume their own unique topic "[ClientID]" and services would send to that topic when they have a reply. Clients would thus not have to filter irrelevant messages.
The drawback there is clients may have a short lifespan, e.g. they may be single use scripts, and they would have to create their topic beforehand and delete it afterward. There might have to be some extra process to purge unused client topics if a client dies during processing.
Which of these seems like a better idea?
We are using Kafka in production as a handler for event based messages and request/response messages. our approach to implementing request/response is your first strategy because, when the number of clients grows, you have to create many topics which some of them are completely useless. another reason for choosing the first strategy was our topic naming guideline that each service should belong to only one topic for tacking. however, Kafka is not made for request/response messages but I recommend the first strategy because:
few numbers of topics
better service tracking
better topic naming
but you have to be careful about your consumer groups. which may causes of data loss.
A better approach is using the first strategy with many partitions in one topic (service) that each client sends and receives its messages with a unique key. Kafka guarantees that all messages with the same key will go to a specific partition. this approach doesn't need filtering irrelevant messages and maybe is a combination of your two strategies.
Update:
As #ValBonn said in the suggested approach you always have to be sure that the number of partitions >= number of clients.
I'm trying to replace rabbit mq with apache-kafka and while planning, I bumped in to several conceptual planning problem.
First we are using rabbit mq for per user queue policy meaning each user uses one queue. This suits our need because each user represent some job to be done with that particular user, and if that user causes a problem, the queue will never have a problem with other users because queues are seperated ( Problem meaning messages in the queue will be dispatch to the users using http request. If user refuses to receive a message (server down perhaps?) it will go back in retry queue, which will result in no loses of message (Unless queue goes down))
Now kafka is fault tolerant and failure safe because it write to a disk.
And its exactly why I am trying to implement kafka to our structure.
but there are problem to my plannings.
First, I was thinking to create as many topic as per user meaning each user would have each topic (What problem will this cause? My max estimate is that I will have around 1~5 million topics)
Second, If I decide to go for topics based on operation and partition by random hash of users id, if there was a problem with one user not consuming message currently, will the all user in the partition have to wait ? What would be the best way to structure this situation?
So as conclusion, 1~5 millions users. We do not want to have one user blocking large number of other users being processed. Having topic per user will solve this issue, it seems like there might be an issue with zookeeper if such large number gets in (Is this true? )
what would be the best solution for structuring? Considering scalability?
First, I was thinking to create as many topic as per user meaning each user would have each topic (What problem will this cause? My max estimate is that I will have around 1~5 million topics)
I would advise against modeling like this.
Google around for "kafka topic limits", and you will find the relevant considerations for this subject. I think you will find you won't want to make millions of topics.
Second, If I decide to go for topics based on operation and partition by random hash of users id
Yes, have a single topic for these messages and then route those messages based on the relevant field, like user_id or conversation_id. This field can be present as a field on the message and serves as the ProducerRecord key that is used to determine which partition in the topic this message is destined for. I would not include the operation in the topic name, but in the message itself.
if there was a problem with one user not consuming message currently, will the all user in the partition have to wait ? What would be the best way to structure this situation?
This depends on how the users are consuming messages. You could set up a timeout, after which the message is routed to some "failed" topic. Or send messages to users in a UDP-style, without acks. There are many ways to model this, and it's tough to offer advice without knowing how your consumers are forwarding messages to your clients.
Also, if you are using Kafka Streams, make note of the StreamPartitioner interface. This interface appears in KStream and KTable methods that materialize messages to a topic and may be useful in a chat applications where you have clients idling on a specific TCP connection.