Multiple apps in single K8S deployment - kubernetes

I'm exploring K8S possibilities and I'm wonder is there any way to create deployments for two or more apps in single deployment so it is transactional - when something is wrong after deployment all apps are rollbacked. Also I want to mention that I'm not saying about pod with multiple containers because additional side car containers are rather intended for some crosscutting concerns like monitoring, authentication (like kerberos) and others but it is not recommended to put different apps in single pod. Having this in mind, is it possible to have single deployment that can produce 2+ kind of pods?

Is it possible to have single deployment that can produce 2+ kind of pods?
No. A Deployment creates only one kind of Pod. You can update a Deployment's contents, and it will incrementally replace existing Pods with new ones that match the updated Pod spec.
Nothing stops you from creating multiple Deployments, one for each kind of Pod, and that's probably the approach you're looking for here.
... when something is wrong after deployment all apps are rollbacked.
Core Kubernetes doesn't have this capability on its own; indeed, it has somewhat limited capacity to tell that something has gone wrong, other than a container failing its health checks or exiting.
Of the various tools in #SYN's answer I at least have some experience with Helm. It's not quite "transactional" in the sense you might take from a DBMS, but it does have the ability to manage a collection of related resources (a "release" of a "chart") and it has the ability to roll back an entire version of a release across multiple Deployments if required. See the helm rollback command.

Helm
As pointed out in comments, one way to go about this would be to use something like Helm.
Helm is some kind of client (as of v3. Previous also involved "tiller", a controller running in your kubernetes cluster: let's forget about that one/deprecated).
Helm uses "Charts" (more or less: templates, with default values you can override).
Kustomize
Another solution, similar to Helm, is Kustomize. Working from plain-text files (not templates), while making it simple to override / customize your objects before applying them to your Kubernetes cluster.
ArgoCD
While Kustomize and Helm are both standalone clients, we could also mention solutions such as ArgoCD.
The ArgoCD controller would run inside your Kubernetes cluster, allowing you to create "Application" objects.
Those Applications are processed by ArgoCD, driving deployment of your workloads (common sources for those applications would involve Helm Charts, Git repositories, ...).
The advantage of ArgoCD being that their controller may (depending on your configuration) be responsible for upgrading your applications over time (eg: if your source is a git repository, branch XXX, and someone pushes changes into that branch: argocd would apply those pretty much right away)
Operators
Although most of those solutions are pretty much unaware of how your application is running. Say you upgrade a deployment, driven by Helm, Kustomize or ArgoCD, and end up with some database pods stuck in crashloopbackoff: your application pods would get updated nevertheless, there's no automatic rollback to a previous working configuration.
Which brings us to another way to ship applications to Kubernetes: operators.
Operators are aware of the state of your workloads, and may be able to fix common errors ( depending on how it was coded, ... there's no magic ).
An operator is an application (can be in Go, Java, Python, Ansible playbooks, ... or whichever comes with some library communicating with a Kubernetes cluster API)
An operator is constantly connected to your Kubernetes cluster API. You would usually find some CustomResourceDefinitions specific to your operator, allowing you to describe the deployment of some component in your cluster. (eg: the elasticsearch operator introduces an object kind "ElasticSearch", and some "Kibana")
The operator watches for instances of the objects it managed (eg: ElasticSearch), eventually creating Deployment/StatefulSets/Services ...
If someone deletes an object that was created by your operator, it would/should be re-created by that operator, in a timely manner (mileage may vary, depending on which operator we're talking about ...)
A perfect sample for operators would be something like OpenShift 4 (OKD4). A Kubernetes cluster that comes with 10s of operators (SDN, DNS, machine configurations, ingress controller, kubernetes API server, etcd database, ...). The whole cluster is an assembly of operators: upgrading your cluster, each of those would manage the upgrade of the corresponding services, in an orchestrated way, ... one after the other, ... if anything fails, you're still usually left with enough replicas running to troubleshoot the issue, ...
Depending on what you're looking for, each option has advantages and inconvenients. Now if you're looking for "single deployment that can produce 2+ kind of pods", then ArgoCD or some home-grown operator would qualify.

Related

Kubernetes: How to manage multiple separate deployments of the same app

We're migrating our app's deployments from using VMs to Kubernetes and as my knowledge of Kubernetes is very limited, I'm lost how I could set up deployment for multiple clients.
Right now we have a separate VM for each client but how to separate the clients in Kubernetes in a way that will be cost and resource efficient and easy to manage?
I managed to create dev and staging environments using namespaces and this is working great.
To update dev and staging deployment I just use kubectl apply -f <file> --namespace staging.
Now I need to deploy app to production for several clients (50+). They should be completely separate from each other (using separate environment variables and secrets) while code should be the same. And I don't know what is the best way to achieve that.
Could you please hint me what is the right way for that in Kubernetes?
You can use Kustomize. It provides purely declarative approach to configuration customization to manage an arbitrary number of distinctly customized Kubernetes configurations.
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
one (or a set of namespaces) by customer
kustomize has a very good patterns system to handle generic configuration and several adaptation by clients
use NetworkPolicy to isolate network between clients

Can a deployment resource have multiple containers?

I am trying to deploy multiple pods in k8s like say MySQL, Mango, Redis etc
Can i create a single deployment resource for this and have multiple containers defined in template section? Is this allowed? If so, how will replication behave in this case?
Thanks
Pavan
I am trying to deploy multiple pods in k8s like say MySQL, Mango,
Redis etc
From microservices architecture perspective it is actually quite a bad idea to place all those containers in a single Pod. Keep in mind that a Pod is a smallest deployable unit that can be created and managed by Kubernetes. There are quite many good reasons you don't want to have all above mentioned services in a single Pod. Difficulties in scaling such solution is just one of them.
Can i create a single deployment resource for this and have multiple
containers defined in template section? Is this allowed? If so, how
will replication behave in this case?
No, it is not allowed in Kubernetes. As to Deployments and StatefulSets, (which you need for statefull applications such as databases) both manage Pods that are based on identical container spec so it is not possible to have a Deployment or StatefulSet consisting of different types of Pods, based on different specs.
To sum up:
Many Deployments and StatefulSets objects, serving for different purposes are the right solution.
A deployment can have multiple containers inside of it.
Generaly it's used to have one master container for the app and some sidecar container that are needed for the app. I don't have an example right now.
Still it's a best practice to split deployments for scalling purpose, your front may need to scale more than the back depending on cache and you may not want to have pods too big. For cahing purpose like redis it's better to have a cluster on the side as each time a pod start or stop, you will loose data.
It's common having multiple containers per Pod in order to share namespaces and volumes between them: take as example the Ambassador pattern that is used to present the application to outside adding a layer for the authentication, making it totally transparent to the main app.
Other examples using the sidecar pattern consist of log parsers or configurators that hot reload credentials without the main app to worry about it.
That's the theory, according to your needs you have to use one deployment per component, so a Deployment for your app, a StatefulSet for the DB and so on. Keep in mind to use a container per process and a Kubernetes resource per backing service.

Can i only change one pod in kubernetes?

I only want to deploy one pod in k8s.
For example, I deploy several pods in one pool with the same codes, but I only want to change one pod to do some test. Can it be done?
What you're describing in your question is actually the closest to what we call Canary Deployment.
In a nutshell Canary Deployment (also known as Canary Release) is a technique that allows you to reduce potential risk of introducing in production a new software version that may be corrupted. It is achieved by rolling out the change only to a small subset of servers ( in Kubernetes it may be just one pod ) before deploying it to the entire infrastructure and making it available to everybody.
If you decide e.g. to deploy one more pod using new image version and you've got already working deployment consisting let's say of 3 replicas, only 25 % of traffic will be routed to the new pod. Once you decide the test was successful you may continue rolling out the update to other pods.
Here you can find an article describing in detail how you can perform such kind of deployment on Kubernetes.
It's actually similar approach to Blue-Green Deployment already mentioned by #Malathi and has a lot in common with it.
Perhaps you meant Blue-Green Deployments.
The common release process involves, adding new pods with the latest release and perhaps expose a certain percent of the traffic to be routed to the new release pod. If everything goes well you can remove the old pods with old release and replace them with new pods with the new release.
This article talks of blue-green deployments with Kubernetes.
It is also possible to use service mesh-like istio with Kubernetes for advanced blue-green deployments such as redirect traffic to a new release based on header values or cookies.

Linking kubernetes namespace to nodes

It seems to be good practice to map environments such as dev, qa and production to kubernetes namespaces. To achieve "true" separation, it seems to be a good idea to label nodes exclusively dedicated to one of those namespaces and ensure resources in those environments get scheduled on those nodes only. That's at least our current thinking. There may be manifests one might want to use in those namespaces that should/must not be tampered with. Kubernetes does not seem to support associating namespaces with nodes out of the box. PodNodeSelector admission controller seems close but is not quite what we are looking for. The only option to achieve what we want seems to be a custom mutating admission webhook as documented here.
I guess other people have been here before and there is a solution to address our primary concern which is that we don't want load on dev or qa environments impacting production performance.
Is there any off the shelf solution linking namespaces to nodes?
If not, are there any alternative approaches ensuring that environments do not interfere in terms of load/performance?
I guess other people have been here before and there is a solution to address our primary concern which is that we don't want load on dev or qa environments impacting production performance.
Been there, got burned by it.
Multiple environments in one cluster might be a good idea under certain circumstances but mixing dev/qa/stage with production in a single cluster spells trouble. Load itself might not be the main issue, especially if you mitigate effects with proper resource allocation, but any tweak, modification and dev-process induced outage on kube-system pods affects production directly. You can't test updates on kubernetes system components beforehand, any cni issue on dev can slow down or render inoperable production and so on... We went down that path and don't recommend it.
With that being said, separation as such is rather easy. On one of our clusters we do keep dev/qa/stage environments for some projects in single cluster, and separate some of the resources with labels. Strictly speaking not really env-separated but we do have dedicated nodes for elk covering all three environments, separate gitlab runners nodes, database nodes and so on, but principle is same. We label nodes and use nodeAffinity with nodeSelectorTerms to target group of nodes with same label for certain task/service (or environment in your case) separation. As a side notenodeSelector is depricated according to the official documentation.
In my opinion having multiple environments in one cluster is a bad idea, for many reasons.
If you are sure you want to do it, and don't want to kill the performance of production pods, you can easily attach resources to deployments/pods.
Another approach is to attach labels to nodes, and force particular pods to deploy on them using PodNodeSelector
In general it is not recommended to use namespaces to separate software environments (dev, test, staging, prod..).
The best practice is to use a dedicated cluster for each environment.
To save on costs, you can take the comprises of using:
1 cluster: dev, test, staging
1 cluster: prod
and with this setup, creation of resources namespace in the cluster shared for dev, testing, and staging get a little more annoying to be managed.
I found it very useful the motivations for using namespaces from the docs.
Still, if you need to ensure a set of nodes is dedicated only to the resources in a namespace, you should use a combination of:
podSelector to force scheduling of resources only on nodes of the set
and a taint to deny scheduling of any other resource not in the namespace on the nodes of the set
How to create a namespace dedicated to use only a set of nodes: https://stackoverflow.com/a/74617601/5482942

Clusters and nodes formation in Kubernetes

I am trying to deploy my Docker images using Kubernetes orchestration tools.When I am reading about Kubernetes, I am seeing documentation and many YouTube video tutorial of working with Kubernetes. In there I only found that creation of pods, services and creation of that .yml files. Here I have doubts and I am adding below section,
When I am using Kubernetes, how I can create clusters and nodes ?
Can I deploy my current docker-compose build image directly using pods only? Why I need to create services yml file?
I new to containerizing, Docker and Kubernetes world.
My favorite way to create clusters is kubespray because I find ansible very easy to read and troubleshoot, unlike more monolithic "run this binary" mechanisms for creating clusters. The kubespray repo has a vagrant configuration file, so you can even try out a full cluster on your local machine, to see what it will do "for real"
But with the popularity of kubernetes, I'd bet if you ask 5 people you'll get 10 answers to that question, so ultimately pick the one you find easiest to reason about, because almost without fail you will need to debug those mechanisms when something inevitably goes wrong
The short version, as Hitesh said, is "yes," but the long version is that one will need to be careful because local docker containers and kubernetes clusters are trying to solve different problems, and (as a general rule) one could not easily swap one in place of the other.
As for the second part of your question, a Service in kubernetes is designed to decouple the current provider of some networked functionality from the long-lived "promise" that such functionality will exist and work. That's because in kubernetes, the Pods (and Nodes, for that matter) are disposable and subject to termination at almost any time. It would be severely problematic if the consumer of a networked service needed to constantly update its IP address/ports/etc to account for the coming-and-going of Pods. This is actually the exact same problem that AWS's Elastic Load Balancers are trying to solve, and kubernetes will cheerfully provision an ELB to represent a Service if you indicate that is what you would like (and similar behavior for other cloud providers)
If you are not yet comfortable with containers and docker as concepts, then I would strongly recommend starting with those topics, and moving on to understanding how kubernetes interacts with those two things after you have a solid foundation. Else, a lot of the terminology -- and even the problems kubernetes is trying to solve -- may continue to seem opaque