I'm an undergrad student in the Philippines and were currently using Anylogic Software for our thesis. May I ask how to put a chart/time plot that consists the traffic flow (vehicle per hour) so that we can justify that our study area is congested? Thank you and have a good day.
The are a number of options you can use but the simplest option is to count the total number of cars in the system.
For this simply add a Road Network Descriptor and select the road network you want it to represent
Then you add a time plot, and set the value that needs to be plotted as roadNetworkDescriptor.size() and set the update time to hour
Related
We’re generating the data that we might get from a shop floor to run, test, and validate our machine learning models. We first have here a discrete event simulation model for our manufacturing system. Each production order is seen as an agent, which then goes through different processes with a queue (waiting time) and delays (firstly production time, secondly logistics time).
enter image description here
But sometimes we have one process, for example, printing (code 5A, after the second Select5Output), with three different machines, which do not have a particular capacity. It’s time when we divide our order into parts and send them to those machines (very randomly, subjectively).
The data we take is from flowchart_process_states_log in Database.
The data we take is from flowchart_process_states_log in Database.
My questions here are:
How can we define the number of products in each order? Ex. we’re printing card, for one order it may be 10k, for another 8k or 33k. Can we define it as agent’s parameter? Then how can we vary them (stochastically, no exact number needed).
How can we split those 10k cards into three different machines? And then how to get back an complete agent with 10k? The Agent ID should remain the same as we trace and analyse them in ML model. Is it reasonable to see an order as an agent?
How can we multiply the number of our agent after a process? Ex. After cutting 10k pieces we have 20k.
We have the distribution for delay ex. triangle distribution. But we want some disturbances, when it suddenly takes 2 days for that delay instead of 3-4 hours as normal. How to do it?
Thank you in advance for your effort. Every help is highly appreciated, because we're here and learning together. Thank you !!
Using system dynamics on anylogic how can you model a simulation that will give an infectious curve of this nature(Below picture) using SEIR.
enter image description here
I have tried to simulate, however my graph goes up and down. It does not oscillate as per the attached picture.
I need to simulate something similar to the graph for my assingment.
There should be three types of events in your model.
First, lets call it "initial spread", is triggered on the start of your simulation.
Second, lets call it "winter season", is triggered annualy in November\December.
Third, lets call it "mass vaccination" - you can decide when to trigger it and for what selection of your agents.
So first two are kind of global events, and the third event is specific to some sub-population (this can make the third wave kind of "toothy" if you trigger it in slightly different moments for different populations).
That is pretty it.
Curios to see how your model will predict the fourth wave - second winter season of your simulation. So keep us updated :)
There are a number of ways to model this. One of the simplest ways is to simply use a time aspect for one of your infection rate parameters so that the infection rate increases or decreases with time.
See the example below.
I took the SIR model from the Cloud https://cloud.anylogic.com/model/d465d1f5-f1fc-464f-857a-d5517edc2355?mode=SETTINGS
And simply added an event to change the Infectivity rate using an event.
Changing the chart to only show infected people the result now looked something like this.
(See the 3 waves that were created)
You will obviously use a parameters optimization experiment to get the parameter settings as close to reality as possible
I have been working with Anylogic for about 6 months now and my goal is to model a generic energy supply chain for an energy demand (e.g. storm and heat for a house). As a result I want to evaluate how suitable the components in the energy supply chain are to meet the energy demand.
My idea would be to model the components (Ex. PV->Battery Storage->House) as agents. I would have modeled the energy flow in the agents with SD and individual events of the components (e.g. charging and discharging at the battery) via state diagrams.
Currently I have two problems:
Which possibilities are there to create a variable interconnection of my components (agents). For example, if I do not want to evaluate the scenario PV->Battery Storage->House, but PV->Electrolysis->Tank->Fuel Cell->House. My current approach would be to visually connect the agents with ports and connectors and then pass input and output variables for DS calculation via set and get functions. Are there other possibilities, e.g. to realize such a connection via an input Excel? I have seen a similar solution in the video: "How to Build a True Digital Twin with Self-Configuring Models Using the Material Handling Library" by Benjamin Schumann, but I am not sure if this approach can be applied to SD.
To evaluate the energy supply chain, I would like to add information to the energy flow, for example the type (electricity, heat), generation price (depending on which components the energy flow went through) and others. Is there a way to add this information to a flow in SD? My current approach would be to model the energy flow as an agent population with appropriate parameters and variables. Then agents could die when energy is consumed or converted from electricity to heat type. However, I don't know if this fits with the SD modeling of the energy flow.
Maybe you can help me with my problems? I would basically be interested in the opinion of more experienced Anylogic users if my approaches would be feasible or if there are other or easier approaches. If you know of any tutorial videos or example models that address similar problems, I would also be happy to learn from them.
Best
Christoph
Sounds like what you need is a model that combine agent-based and system dynamics approaches with Agents populating the stocks (in your case energy that then gets converted into heat) depending on their connection. There is an example of AB-SD combination model in 'Example' models and I also found one on cloud.anylogic.com, although it is from a different domain.
Perhaps if you can put together a simple example and share then I'll be able to provide more help.
I want to get some statistics on some of the resources I have in AnyLogic. For instance, I have a forklift agent and a resourcePool of forklift and I want to get the hourly utilization and the total distance traveled by all forklifts in the pool. I know I can click on the resourcePool icon and see the utilization, but I want to get that with the traveled distance updated and saved every hour.
Sorry I'm new to this and took me few months of learning to get my model straight
Thank you
First, you must create an agent type for your resources. With that in place, you can record anything anytime using datasets or default AnyLogic logging capability.
See some example models using resource pools with custom agent types such as "Lead acid battery production" and many more.
PS: Recording distance travelled is done automatically if you apply default logging but it is a bit more involved if you want to do it manually.
I have a project that consisted of transmitting data wirelessly from 15 tractors to a station, the maximum distance between tractor and station is 13 miles. I used a raspberry pi 3 to collect data from tractors. with some research I found that there is no wifi or GSM coverage so the only solution is to use RF communication using VHF. so is that possible with raspberry pi or I must add a modem? if yes, what is the criterion for choosing a modem? and please if you have any other information tell me?
and thank you for your time.
I had a similar issue but possibly a little more complex. I needed to cover a maximum distance of 22 kilometres and I wanted to monitor over 100 resources ranging from breeding stock to fences and gates etc. I too had no GSM access plus no direct line of sight access as the area is hilly and the breeders like the deep valleys. The solution I used was to make my own radio network using cheap radio repeaters. Everything was battery operated and was driven by the receivers powering up the transmitters. This means that the units consume only 40 micro amps on standby and when the transmitters transmit, in my case they consume around 100 to 200 milliamps.
In the house I have a little program that transmits a poll to the receivers every so often and waits for the units to reply. This gives me a big advantage because I can, via the repeater trail (as each repeater, the signal goes through, adds its code to the returning message) actually determine were my stock are.
Now for the big issue, how long do the batteries last? Well each unit has a 18650 battery. For the fence and gate controls this is charged by a small 5 volt solar panel and after 2 years running time I have not changed any of them. For the cattle units the length of time between charges depends solely on how often you poll the units (note each unit has its own code) with one exception (a bull who wants to roam and is a real escape artist) I only poll them once or twice a day and I swap the battery every two weeks.
The frequency I use is 433Mhz and the radio transmitters and receivers are very cheap ( less then 10 cents a pair if you by them in Australia) with a very small Attiny (I think) arduino per unit (around 30 cents each) and a length on wire (34.6cm long as an aerial) for the cattle and 69.2cm for the repeaters. Note these calculations are based on the frequency used i.e. 433Mhz.
As I had to install lots of the repeaters I contacted an organisation in China (sorry they no longer exist) and they created a tiny waterproof and rugged capsule that contained everything, while also improving on the design (range wise while reducing power) at a cost of $220 for 100 units not including batterys. I bought one lot as a test and now between myself and my neighbours we bought another 2000 units for only $2750.
In my case this was paid for in less then three months when during calving season I knew exactly were they were calving and was on site to assist. The first time I used it we saved a mother who was having a real issue.
To end this long message I am not an expert but I had an idea and hired people who were and the repeater approach certainly works over long distances and large areas (42 square kilometres).
Following on from the comments above, I'm not sure where you are located but spectrum around the 400mhz range is licensed in many countries so it would be worth checking exactly what you can use.
If this is your target then this is UHF rather than VHF so if you search for 'Raspberry PI UHF shield' or 'Raspberry PI UHF module' you will find some examples of cheap hardware you can add to your raspberry pi to support communication over these frequencies. Most of the results should include some software examples also.
There are also articles on using the pins on the PI to transmit directly by modulating the voltage them - this is almost certainly going to interfere with other communications so I doubt it would meet your needs.