Changing the Heat transfer model of the ClosedVolume of the Modelica Standard Library lead to an unbalanced model - modelica

The documentation of the Modelica.Fluid.Vessels.ClosedVolume says that IdealHeatTransfer is considered by default. I'd like to use ConstantFlowHeatTransfer instead. I declare it in the Text View. However, doing so leads to an unbalanced model : 939 equations and 943 variables.
Here is the model :
And here is the code used :
model Closed_volume_test
replaceable package Medium=Modelica.Media.Water.ConstantPropertyLiquidWater constrainedby Modelica.Media.Interfaces.PartialMedium;
replaceable model HeatTransfer_1 = Modelica.Fluid.Pipes.BaseClasses.HeatTransfer.ConstantFlowHeatTransfer(alpha0=1800);
replaceable model HeatTransfer_2 = Modelica.Fluid.Pipes.BaseClasses.HeatTransfer.ConstantFlowHeatTransfer(alpha0=8000);
Modelica.Fluid.Vessels.ClosedVolume volume(redeclare package Medium = Medium, redeclare final model HeatTransfer = HeatTransfer_1, V = 20, energyDynamics = Modelica.Fluid.Types.Dynamics.SteadyState, massDynamics = Modelica.Fluid.Types.Dynamics.SteadyState, nPorts= 2, use_HeatTransfer = true, use_portsData = false) annotation(
Placement(visible = true, transformation(origin = {0, -36}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Pipes.StaticPipe pipe(redeclare package Medium = Medium,diameter = 0.15, length = 1) annotation(
Placement(visible = true, transformation(origin = {26, -54}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.MassFlowSource_T boundary1(redeclare package Medium = Medium, T = 328.15, m_flow = 1,nPorts = 1) annotation(
Placement(visible = true, transformation(origin = {-56, -54}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.Boundary_pT boundary(redeclare package Medium = Medium,T = 328.15, nPorts = 1, p = 1e5) annotation(
Placement(visible = true, transformation(origin = {56, -54}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
inner Modelica.Fluid.System system annotation(
Placement(visible = true, transformation(origin = {-88, 32}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Pipes.StaticPipe pipe1(redeclare package Medium = Medium,diameter = 0.15, length = 1) annotation(
Placement(visible = true, transformation(origin = {-26, -54}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Pipes.DynamicPipe pipe2(redeclare package Medium = Medium, redeclare final model HeatTransfer = HeatTransfer_2, diameter = 38e-3, energyDynamics = Modelica.Fluid.Types.Dynamics.SteadyState, length = 15, massDynamics = Modelica.Fluid.Types.Dynamics.SteadyState, momentumDynamics = Modelica.Fluid.Types.Dynamics.SteadyState, nNodes = 10, use_HeatTransfer = true) annotation(
Placement(visible = true, transformation(origin = {0, 28}, extent = {{-10, 10}, {10, -10}}, rotation = 0)));
Modelica.Fluid.Sources.Boundary_pT boundary2(redeclare package Medium = Medium,T = 311.15, nPorts = 1, p = 14.6e5) annotation(
Placement(visible = true, transformation(origin = {-36, 28}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.MassFlowSource_T boundary3(redeclare package Medium = Medium,m_flow = -0.25, nPorts = 1) annotation(
Placement(visible = true, transformation(origin = {36, 28}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Examples.HeatExchanger.BaseClasses.WallConstProps wallConstProps(area_h = 0.89, c_wall = 510, energyDynamics = Modelica.Fluid.Types.Dynamics.SteadyState, k_wall = 60.5, n = 10, rho_wall = 7850, s = 3e-3) annotation(
Placement(visible = true, transformation(origin = {0, 8}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Thermal.HeatTransfer.Components.ThermalCollector thermalCollector(m = 10) annotation(
Placement(visible = true, transformation(origin = {0, -10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation
connect(boundary1.ports[1], pipe1.port_a) annotation(
Line(points = {{-46, -54}, {-36, -54}}, color = {0, 127, 255}));
connect(pipe.port_b, boundary.ports[1]) annotation(
Line(points = {{36, -54}, {46, -54}}, color = {0, 127, 255}));
connect(volume.ports[1], pipe1.port_b) annotation(
Line(points = {{0, -46}, {-16, -46}, {-16, -54}}, color = {0, 127, 255}));
connect(volume.ports[2], pipe.port_a) annotation(
Line(points = {{0, -46}, {16, -46}, {16, -54}}, color = {0, 127, 255}));
connect(boundary2.ports[1], pipe2.port_a) annotation(
Line(points = {{-26, 28}, {-10, 28}}, color = {0, 127, 255}));
connect(pipe2.port_b, boundary3.ports[1]) annotation(
Line(points = {{10, 28}, {26, 28}}, color = {0, 127, 255}));
connect(pipe2.heatPorts, wallConstProps.heatPort_a) annotation(
Line(points = {{0, 24}, {0, 13}}, color = {127, 0, 0}, thickness = 0.5));
connect(wallConstProps.heatPort_b, thermalCollector.port_a) annotation(
Line(points = {{0, 3}, {0, 0}}, color = {191, 0, 0}, thickness = 0.5));
connect(thermalCollector.port_b, volume.heatPort) annotation(
Line(points = {{0, -20}, {-10, -20}, {-10, -36}}, color = {191, 0, 0}));
annotation(
uses(Modelica(version = "3.2.3")));
end Closed_volume_test;
Is it possible to use another model for the heat transfer for the ClosedVolume ? If so, does anyone know how can I solve this problem?
Best regards
Maxime

ConstantFlowHeatTransfer is inherited from PartialFlowHeatTransfer which uses quantities such as length and nParallel which are not defined (and have no meaning) in the volume model. This is why you cannot use it.
ClosedVolume uses heat transfer models that inherit from PartialVesselHeatTransfer. You can build your own heat transfer model based on this.
If you need to consider the convective heat transfer in the "lower" medium of your model you could replace pipe, pipe1 and volume with a DynamicPipe model (with modelStructure=a_v_b and nNodes=1).

Related

OpenModelica suction side pressure loss

I want to model the positioning of a pump with only little available NPSH with PumpMonitoringNPSH in MSL/Fluid. But simulation always fails, when I add a suction side pressure loss. It does not matter how large the suction side pressure of a tank or source or how big of a diameter I choose. The moment I comment out the monitoring and switch to ConstantPropertyLiquidWater the simulation works.
The full model is available here.
version: OpenModellica 1.20.0~dev-250-gb17e1a0
model PumpenTeststand
// monitor
Modelica.Units.NonSI.Pressure_bar p_r;
// system
inner Modelica.Fluid.System system annotation(
Placement(visible = true, transformation(origin = {-90, 90}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
// media
replaceable package Medium = Modelica.Media.Water.StandardWater;
//Modelica.Media.Water.ConstantPropertyLiquidWater;
// aggregate
Modelica.Fluid.Machines.PrescribedPump pumpe(
redeclare package Medium = Medium,
m_flow_start = 1,
redeclare function flowCharacteristic = Modelica.Fluid.Machines.BaseClasses.PumpCharacteristics.quadraticFlow(
V_flow_nominal={0.0556,0.1665,0.2778},
head_nominal={3.75e1,3e1,1.9e1}),
redeclare model Monitoring = Modelica.Fluid.Machines.BaseClasses.PumpMonitoring.PumpMonitoringNPSH,
N_nominal = 1482,
p_a_start = 1e5,
p_b_start = 1e5) annotation(
Placement(visible = true, transformation(origin = {-10, -10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
// leitungen
Modelica.Fluid.Pipes.StaticPipe leitung(
redeclare package Medium = Medium,
diameter = 0.4,
length = 0.1,
nParallel = 1) annotation(
Placement(visible = true, transformation(origin = {-50, -10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
// grenzen
Modelica.Fluid.Sources.FixedBoundary quelle(
redeclare package Medium = Medium,
nPorts = 1,
p = system.p_ambient) annotation(
Placement(visible = true, transformation(origin = {-90, -10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.Boundary_pT senke(
redeclare package Medium = Medium,
p = system.p_ambient,
T=system.T_ambient,
use_p_in=true, nPorts = 1) annotation(
Placement(visible = true, transformation(origin = {70, -10}, extent = {{-10, 10}, {10, -10}}, rotation = 180)));
// regelung
Modelica.Blocks.Sources.Ramp rampe(duration = 10, height = 5e5, offset = 1e5) annotation(
Placement(visible = true, transformation(origin = {50, 30}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation
p_r = Modelica.Units.Conversions.to_bar(pumpe.port_b.p - pumpe.port_a.p);
connect(rampe.y, senke.p_in) annotation(
Line(points = {{62, 30}, {92, 30}, {92, -2}, {82, -2}}, color = {0, 0, 127}));
connect(pumpe.port_b, senke.ports[1]) annotation(
Line(points = {{0, -10}, {60, -10}}, color = {0, 127, 255}));
connect(quelle.ports[1], leitung.port_a) annotation(
Line(points = {{-80, -10}, {-60, -10}}, color = {0, 127, 255}));
connect(leitung.port_b, pumpe.port_a) annotation(
Line(points = {{-40, -10}, {-20, -10}}, color = {0, 127, 255}));
annotation(experiment(StopTime=10));
end PumpenTeststand;
/tmp/OpenModelica_dh/OMEdit/Druckverlust.PumpenTeststand/PumpenTeststand -port=38349 -logFormat=xmltcp -override=startTime=0,stopTime=10,stepSize=0.02,tolerance=1e-06,solver=dassl,outputFormat=mat,variableFilter=.* -r=/tmp/OpenModelica_dh/OMEdit/Druckverlust.PumpenTeststand/PumpenTeststand_res.mat -w -lv=LOG_STATS -inputPath=/tmp/OpenModelica_dh/OMEdit/Druckverlust.PumpenTeststand -outputPath=/tmp/OpenModelica_dh/OMEdit/Druckverlust.PumpenTeststand
IF97 medium function tsat called with too low pressure
p = -161336 Pa <= 611.657 Pa (triple point pressure)
Failed to solve the initialization problem with global homotopy with equidistant step size.
Unable to solve initialization problem.
simulation terminated by an assertion at initialization
Simulation process failed. Exited with code 255.

How can I use the SimpleGenericOrifice of the Modelica Standard Library to impose pressure loss in a pipe?

I would like to model an hydraulic network where I use the Modelica.Fluid.Fittings.SimpleGenericOrifice as a seal so I can impose the pressure loss of a pipe. Using the formula in the documentation, I can calculate the zeta coefficient of the orifice.
Here is a simplified example, here I try to impose a pressure loss of 50 bar inside my pipe1. Because the pressure should be equal at the port, I assume that it should work :
However I don't have any pressure loss in the pipe and in the orifice.
Does anyone know how to make this work ?
Here is the code of the example
model Joints_HD
replaceable package Medium=Modelica.Media.Water.StandardWater constrainedby
Modelica.Media.Interfaces.PartialMedium;
Modelica.Fluid.Pipes.StaticPipe pipe(redeclare package Medium = Medium,diameter = 0.15, length = 1) annotation(
Placement(visible = true, transformation(origin = {-38, 10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
inner Modelica.Fluid.System system annotation(
Placement(visible = true, transformation(origin = {-70, 42}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.Boundary_pT boundary(redeclare package Medium = Medium,T = 328.15, p = 157e5, nPorts = 1) annotation(
Placement(visible = true, transformation(origin = {-66, 10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.MassFlowSource_T boundary1(redeclare package Medium = Medium,T = 328.15, m_flow = -0.17, nPorts = 1) annotation(
Placement(visible = true, transformation(origin = {72, 10}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Pipes.StaticPipe pipe2(redeclare package Medium = Medium,diameter = 0.15, length = 1) annotation(
Placement(visible = true, transformation(origin = {44, 10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Fittings.SimpleGenericOrifice orifice(redeclare package Medium = Medium,diameter = 0.15, dp_nominal = 5e+06, m_flow_nominal = 2.34e-9, use_zeta = false) annotation(
Placement(visible = true, transformation(origin = {2, 10}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Pipes.StaticPipe pipe1(redeclare package Medium = Medium, diameter = 0.15, length = 1) annotation(
Placement(visible = true, transformation(origin = {2, -18}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
equation
connect(boundary.ports[1], pipe.port_a) annotation(
Line(points = {{-56, 10}, {-48, 10}}, color = {0, 127, 255}));
connect(pipe.port_b, orifice.port_a) annotation(
Line(points = {{-28, 10}, {-8, 10}}, color = {0, 127, 255}));
connect(pipe2.port_b, boundary1.ports[1]) annotation(
Line(points = {{54, 10}, {62, 10}}, color = {0, 127, 255}));
connect(orifice.port_b, pipe2.port_a) annotation(
Line(points = {{12, 10}, {34, 10}}, color = {0, 127, 255}));
connect(pipe.port_b, pipe1.port_a) annotation(
Line(points = {{-28, 10}, {-20, 10}, {-20, -18}, {-8, -18}}, color = {0, 127, 255}));
connect(pipe1.port_b, pipe2.port_a) annotation(
Line(points = {{12, -18}, {26, -18}, {26, 10}, {34, 10}}, color = {0, 127, 255}));
annotation(
uses(Modelica(version = "3.2.3")));
end Joints_HD;
Best regards,
Maxime
pipe1 has "wrong" dimensions (diameter, length, roughness etc.) since it only creates a very small pressure drop.
To verify that the rest of the model is okay — and that you can have a pressure drop of 50 bar over pipe1 at the flow set in boundary1 (0.17 kg/s) — temporarilly change pipe1.FlowModel to NominalTurbulentPipeFlow with m_flow_nominal=0.17 and dp_nominal=50 bar.
Subsequently, switch the flow model back to the default (detailed) model and adjust the pipe geometry.
By the way, you should provide a value for orifice.zeta even though it is not used.

Serial double regulation

I am new to Modelica and OpenModelica and I am trying to learn by myself this language.
I am currently working on a model which the objective is to validate the principle of a serial double regulation:
I placed a heat exchanger. In the left of the heat exchanger, the two valves are installed to regulate a heat flow (87 000 W max.). In the right of the heat exchanger, the three-way diverter valve is regulated to obtain the final temperature (T_final) equal to 80 °C. The regulation is the PID regulation. The pump creates a constant mass flow rate (1 kg/s).
I impose different temperatures thanks to the component "temperature_input". The objective is to obtain a final temperature of 80 °C whatever the value of the input temperature (with 87 000 W max.).
With the model below, the valves are not regulated. Also, I would like to assure a maximum heat flow of 87 000 W (maybe with the component "FixedHeatFlow"?). And I don't know if the problem is badly defined, or if the values of the PID controllers are wrong.
Can someone help me please?
Thank you very much for your answers
Here is a schematic diagram to illustrate my problem:
The model:
model SousStation84
replaceable package Medium = Modelica.Media.Water.StandardWaterOnePhase;
replaceable package Medium1 = AixLib.Media.Water "Medium model";
replaceable package Medium2 = AixLib.Media.Water "Medium model";
Modelica.Fluid.Sensors.MassFlowRate m_in_primary(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-150, 36}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m_out_primary(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-150, -60}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T_in_primary(
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-104, 36}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T_out_primary(
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-70, -60}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.FixedBoundary source(
redeclare package Medium = Medium,nPorts = 1, p = 100000, use_p = true)
annotation(
Placement(visible = true, transformation(extent = {{-340, -70}, {-320, -50}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T2(
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-280, -60}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m2(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-242, -60}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Valves.ValveIncompressible Valve_1(
Kv = 16,
dp_nominal = 60000,
m_flow_nominal = 1.8,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-198, 36}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T1(
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-228, 36}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Valves.ValveIncompressible Valve_2(
Kv = 16,
dp_nominal = 60000,
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-192, -60}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Blocks.Continuous.LimPID PID_1(
Td = 0,
Ti = 300,
controllerType = Modelica.Blocks.Types.SimpleController.PID,
k = 3,
limitsAtInit = true)
annotation(
Placement(visible = true, transformation(origin = {-224, 98}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Blocks.Sources.Constant constant2(
k = 353)
annotation(
Placement(visible = true, transformation(origin = {-290, 98}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Buildings.Fluid.HeatExchangers.PlateHeatExchangerEffectivenessNTU hex(
redeclare package Medium1 = Medium1,
redeclare package Medium2 = Medium2,
Q_flow_nominal = 87000,
T_a1_nominal = 353.15,
T_a2_nominal = 333.15,
configuration = Buildings.Fluid.Types.HeatExchangerConfiguration.CounterFlow,
dp1_nominal = 120000,
dp2_nominal = 100000,
m1_flow_nominal = 8,
m2_flow_nominal = 6,
use_Q_flow_nominal = true)
annotation(
Placement(visible = true, transformation(origin = {-25, -17}, extent = {{-25, 25}, {25, -25}}, rotation = -90)));
AixLib.Fluid.Sensors.TemperatureTwoPort T_final(
m_flow_nominal = 1.8,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(extent = {{152, 30}, {172, 50}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T_V3V(
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {126, -36}, extent = {{-10, 10}, {10, -10}}, rotation = -90)));
Modelica.Fluid.Sources.Boundary_pT temperature_input(
redeclare package Medium = Medium,
T = 333,nPorts = 1,
use_T_in = false)
annotation(
Placement(visible = true, transformation(origin = {270, -76}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T_input(
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {224, -76}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Blocks.Continuous.LimPID PID_2(
Td = 0,
Ti = 300,
controllerType = Modelica.Blocks.Types.SimpleController.PID,
k = 3,
limitsAtInit = true)
annotation(
Placement(visible = true, transformation(origin = {62, 104}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m_input(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {186, -76}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Machines.ControlledPump pump(
N_nominal = 1500,
m_flow_nominal = 1,
p_a_nominal = 110000,
p_b_nominal = 130000,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {146, -76}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.FixedBoundary fixedBoundary(
nPorts = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {272, 40}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T_out_secondary(
m_flow_nominal = 1.8,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(extent = {{20, 30}, {40, 50}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m_V3V(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {126, -4}, extent = {{10, -10}, {-10, 10}}, rotation = 90)));
AixLib.Fluid.Actuators.Valves.ThreeWayLinear threeWayLinear(
dpValve_nominal = 60000,
m_flow_nominal = 1.8,
use_inputFilter = false,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {128, 40}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m_out_secondary(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {88, 40}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m_in_secondary(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {82, -76}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Blocks.Sources.Constant constant1(
k = 353)
annotation(
Placement(visible = true, transformation(origin = {-4, 108}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m_final(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {210, 40}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
AixLib.Fluid.Sensors.TemperatureTwoPort T_in_secondary(
m_flow_nominal = 1,
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {30, -76}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.MassFlowRate m1(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-284, 36}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sources.FixedBoundary fixedBoundary1(
redeclare package Medium = Medium,
nPorts = 1,
p = 200000,
use_p = true)
annotation(
Placement(visible = true, transformation(extent = {{-348, 26}, {-328, 46}}, rotation = 0)));
Modelica.Fluid.Sensors.SpecificEnthalpyTwoPort specificEnthalpy(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-64, 36}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.SpecificEnthalpyTwoPort specificEnthalpy1(
redeclare package Medium = Medium)
annotation(
Placement(visible = true, transformation(origin = {-112, -60}, extent = {{10, -10}, {-10, 10}}, rotation = 0)));
equation
connect(m_in_primary.port_b, T_in_primary.port_a) annotation(
Line(points = {{-140, 36}, {-114, 36}}, color = {0, 127, 255}));
connect(m2.port_a, Valve_2.port_b) annotation(
Line(points = {{-232, -60}, {-202, -60}}, color = {0, 127, 255}));
connect(source.ports[1], T2.port_b) annotation(
Line(points = {{-320, -60}, {-290, -60}}, color = {0, 127, 255}));
connect(T1.port_b, Valve_1.port_a) annotation(
Line(points = {{-234, 36}, {-208, 36}}, color = {0, 127, 255}));
connect(T2.port_a, m2.port_b) annotation(
Line(points = {{-270, -60}, {-252, -60}}, color = {0, 127, 255}));
connect(Valve_1.port_b, m_in_primary.port_a) annotation(
Line(points = {{-188, 36}, {-160, 36}}, color = {0, 127, 255}));
connect(Valve_2.port_a, m_out_primary.port_b) annotation(
Line(points = {{-182, -60}, {-160, -60}}, color = {0, 127, 255}));
connect(constant2.y, PID_1.u_s) annotation(
Line(points = {{-279, 98}, {-236, 98}}, color = {0, 0, 127}));
connect(PID_1.y, Valve_1.opening) annotation(
Line(points = {{-213, 98}, {-198, 98}, {-198, 44}}, color = {0, 0, 127}));
connect(PID_1.y, Valve_2.opening) annotation(
Line(points = {{-213, 98}, {-192, 98}, {-192, -52}}, color = {0, 0, 127}));
connect(hex.port_b1, T_out_primary.port_a) annotation(
Line(points = {{-40, -42}, {-40, -60}, {-60, -60}}, color = {0, 127, 255}));
connect(T_input.port_a, temperature_input.ports[1]) annotation(
Line(points = {{234, -76}, {260, -76}}, color = {0, 127, 255}));
connect(threeWayLinear.port_2, T_final.port_a) annotation(
Line(points = {{138, 40}, {152, 40}}, color = {0, 127, 255}));
connect(m_input.port_a, T_input.port_b) annotation(
Line(points = {{196, -76}, {214, -76}}, color = {0, 127, 255}));
connect(m_V3V.port_b, T_V3V.port_a) annotation(
Line(points = {{126, -14}, {126, -26}}, color = {0, 127, 255}));
connect(constant1.y, PID_2.u_s) annotation(
Line(points = {{7, 108}, {30, 108}, {30, 104}, {50, 104}}, color = {0, 0, 127}));
connect(m_out_secondary.port_b, threeWayLinear.port_1) annotation(
Line(points = {{98, 40}, {118, 40}}, color = {0, 127, 255}));
connect(T_final.T, PID_2.u_m) annotation(
Line(points = {{162, 51}, {162, 80}, {62, 80}, {62, 92}}, color = {0, 0, 127}));
connect(pump.port_a, m_input.port_b) annotation(
Line(points = {{156, -76}, {176, -76}}, color = {0, 127, 255}));
connect(T_V3V.port_b, pump.port_a) annotation(
Line(points = {{126, -46}, {126, -58}, {156, -58}, {156, -76}}, color = {0, 127, 255}));
connect(T_in_secondary.port_a, m_in_secondary.port_b) annotation(
Line(points = {{40, -76}, {72, -76}}, color = {0, 127, 255}));
connect(m_final.port_b, fixedBoundary.ports[1]) annotation(
Line(points = {{220, 40}, {262, 40}}, color = {0, 127, 255}));
connect(PID_2.y, threeWayLinear.y) annotation(
Line(points = {{73, 104}, {128, 104}, {128, 52}}, color = {0, 0, 127}));
connect(T_out_secondary.port_b, m_out_secondary.port_a) annotation(
Line(points = {{40, 40}, {78, 40}}, color = {0, 127, 255}));
connect(m_in_secondary.port_a, pump.port_b) annotation(
Line(points = {{92, -76}, {136, -76}}, color = {0, 127, 255}));
connect(m_V3V.port_a, threeWayLinear.port_3) annotation(
Line(points = {{126, 6}, {126, 21}, {128, 21}, {128, 30}}, color = {0, 127, 255}));
connect(T_final.port_b, m_final.port_a) annotation(
Line(points = {{172, 40}, {200, 40}}, color = {0, 127, 255}));
connect(hex.port_a2, T_in_secondary.port_b) annotation(
Line(points = {{-10, -42}, {-10, -42}, {-10, -76}, {20, -76}, {20, -76}}, color = {0, 127, 255}));
connect(hex.port_b2, T_out_secondary.port_a) annotation(
Line(points = {{-10, 8}, {-10, 8}, {-10, 40}, {20, 40}, {20, 40}}, color = {0, 127, 255}));
connect(T_final.T, PID_1.u_m) annotation(
Line(points = {{162, 52}, {65.5, 52}, {65.5, 66}, {-224, 66}, {-224, 86}}, color = {0, 0, 127}));
connect(m1.port_b, T1.port_a) annotation(
Line(points = {{-274, 36}, {-238, 36}}, color = {0, 127, 255}));
connect(fixedBoundary1.ports[1], m1.port_a) annotation(
Line(points = {{-328, 36}, {-294, 36}}, color = {0, 127, 255}));
connect(m_out_primary.port_a, specificEnthalpy1.port_b) annotation(
Line(points = {{-140, -60}, {-124, -60}, {-124, -60}, {-122, -60}}, color = {0, 127, 255}));
connect(specificEnthalpy1.port_a, T_out_primary.port_b) annotation(
Line(points = {{-102, -60}, {-80, -60}, {-80, -60}, {-80, -60}}, color = {0, 127, 255}));
connect(T_in_primary.port_b, specificEnthalpy.port_a) annotation(
Line(points = {{-94, 36}, {-74, 36}, {-74, 36}, {-74, 36}}, color = {0, 127, 255}));
connect(specificEnthalpy.port_b, hex.port_a1) annotation(
Line(points = {{-54, 36}, {-40, 36}, {-40, 8}, {-40, 8}}, color = {0, 127, 255}));
end SousStation84;

How do I resolve an error pertaining to a variable not located within my OpenModelica Model?

I'm currently working on building a heat recovery steam generator and have just started building from the ThermoPower Library and connected an evaporator to the economizer.
When trying to simulate, an error occurs within the OMEdit Simulator:
division by zero at time 0, (a=-458389.9207317767) / (b=0), where divisor b expression is: 8.75988806777792 * Economizer.metalTube.Am * Economizer.metalTube.rhomcm * /Real/(Economizer.metalTube.Nt)
How exactly do I trouble shoot this error if I cannot define or locate the needed variables that are causing b=0?
Please let me know what you think about this. Your time and energy is greatly appreciated.
I'm not the best at debugging my models but I have an idea and I have some confusion trouble shooting this. My initial confusion was to verify which variable resulted in b=0. However, upon inspection I noticed how the variable Economizer.metalTube.Nt, Economizer.metalTube.Am did not exist within my the economizer class. I knew it had to be rooted into my class through extensions and partial classes and tried to define these "missing" variables in the text view of my economizer model, but this simply resulted in an error saying:
[1] 11:46:14 Translation Error
[ThermoPower_HRSG_Econ_Evap: 68:3-92:112]: Variable Economizer: In modifier (Nt = 3), class or component Nt not found in .
If you have any advice and/or recommendations please leave a comment below!
///UPDATE: Moving forward after what I've learned from others and implementing their suggestions.///
After reading what you and others have said about my issue on OpenModelica I have come to a better understanding of the situation. However, I am still confused as to what is the best way to move forward to debug my model.
So my "Economizer" model, or a heat exchanger located in ThermoPower.Examples.RankineCycles.Models.HE, was having the error associated with the divisor "b=0".
When debugging, the error hyperlinked me to the package "thermal" which pointed me towards the line of code that is being flagged:
(L/Nw*Nt)*rhomcm*Am*der(Tvol) = int.Q + ext.Q "Energy balance";
This line of code is also being used in the Economizer HE class (ThermoPower.Examples.RankineCycles.Models.HE). Here in the HE.mo, the same flagged line of code from the thermal package that is causing the error is also located here. What's making my model cause the divider "b=0" are the variables: L, Nw, Nt, Am and Tvol. These variables are not defined/found in the model I am using when defining system parameters.
What's confusing for me as a OpenModelica user is that those variables just mentioned above (L, Nw, Nt, Am and Tvol) are coded/defined in the ThermoPower.Examples.RankineCycles.Models.HE text view of the component, but when I try to define/add them into my Economizer.mo belonging to the ThermoPower.Examples.RankineCycles.Models.HE class, errors are triggered claiming:
[ThermoPower_HRSG_Econ_Evap: 69:3-94:112]: Variable Economizer: In modifier
(Nt = 1), class or component Nt not found in
<ThermoPower.Examples.RankineCycle.Models.HE$Economizer>.
Essentially, the errors causing the divider "b=0" are located in the base class of the economizer I am using. However, due to the absence or in-ability to define these needed variables within my Economizer.mo model, the equation:
(L/Nw*Nt)*rhomcm*Am*der(Tvol) = int.Q + ext.Q "Energy balance";
Is now being violated. How do I fix this issue properly?
///UPDATE: CODE PROVIDED BELOW///
model ThermoPower_HRSG_Econ_Evap
ThermoPower.Gas.SourceMassFlow Source_FlueGas(
redeclare package Medium = ThermoPower.Media.FlueGas,
T = 331.59 + 273.15,
p0 = 101325,
w0 = 169.755) annotation(
Placement(visible = true, transformation(origin = {-92, 30}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Water.SourceMassFlow Source_Steam(
T = 46.45 + 273.15,
h = 203.22e3,
p0 = 80e5,
use_T = true,
w0 = 21.5) annotation(
Placement(visible = true, transformation(origin = {-10, 90}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Water.SensT sensT_WaterIn_Econ annotation(
Placement(visible = true, transformation(origin = {4, 60}, extent = {{-10,
-10}, {10, 10}}, rotation = -90)));
ThermoPower.Water.SensT sensT_WaterOut_Econ annotation(
Placement(visible = true, transformation(origin = {4, 0}, extent = {{-10,
-10}, {10, 10}}, rotation = -90)));
ThermoPower.Gas.SensT sensT_ExhaustIn_Econ(
redeclare package Medium = ThermoPower.Media.FlueGas) annotation(
Placement(visible = true, transformation(origin = {-50, 34}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Gas.SensT sensT_ExhaustOut_Econ(
redeclare package Medium = ThermoPower.Media.FlueGas) annotation(
Placement(visible = true, transformation(origin = {50, 34}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
inner ThermoPower.System system annotation(
Placement(visible = true, transformation(origin = {-90, 90}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Gas.SinkPressure Sink_FlueGas(
redeclare package Medium = ThermoPower.Media.FlueGas,
p0 = 101325) annotation(
Placement(visible = true, transformation(origin = {94, -70}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Water.SinkPressure Sink_Steam(
p0 = 80e5) annotation(
Placement(visible = true, transformation(origin = {10, -90}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Examples.HRB.Models.Evaporator Evaporator(
cm = 480,
exchSurface = 2.752,
fluidNomFlowRate = 21.5,
fluidNomPressure = 8e+06,
fluidVol = 0.01376,
gamma = 85,
gasNomFlowRate = 169.755,
gasNomPressure = 101325,
gasVol = 0.01376,
metalVol = 0.01376,
rhom(displayUnit = "kg/m3") = 8055,
rhonom_G = 1) annotation(
Placement(visible = true, transformation(origin = {0, -50}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Gas.SensT sensT_ExhaustOut_Evap(
redeclare package Medium = ThermoPower.Media.FlueGas) annotation(
Placement(visible = true, transformation(origin = {50, -66}, extent =
{{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Blocks.Continuous.FirstOrder VoidFractionSensor annotation(
Placement(visible = true, transformation(origin = {53, -43}, extent =
{{-5, -5}, {5, 5}}, rotation = 0)));
Modelica.Blocks.Interfaces.RealOutput VoidFraction annotation(
Placement(visible = true, transformation(origin = {110, -42}, extent =
{{-10, -10}, {10, 10}}, rotation = 0), iconTransformation(origin = {110,
-42}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
ThermoPower.Examples.RankineCycle.Models.HE Economizer(
FFtype_G = ThermoPower.Choices.Flow1D.FFtypes.OpPoint,
FluidPhaseStart = ThermoPower.Choices.FluidPhase.FluidPhases.Liquid,
N_F = 6,
N_G = 6,
Tstart_G = 604.74,
Tstart_M = 573.15, counterCurrent = true,
exchSurface_F = 2.752,
exchSurface_G = 2.752,
extSurfaceTub = 5.504,
fluidNomFlowRate = 21.5,
fluidNomPressure = 8e+06,
fluidVol = 0.01376,
gamma_F = 3000,
gamma_G = 30,
gasNomFlowRate = 169.755,
gasNomPressure = 101325,
gasVol = 0.01376,
lambda = 19.8,
metalVol = 0.01376,
rhomcm = 8055 * 480,
rhonom_F(displayUnit = "kg/m3") = 997,
rhonom_G = 1) annotation(
Placement(visible = true, transformation(origin = {0, 30}, extent = {{-10,
-10}, {10, 10}}, rotation = 0)));
equation
connect(Economizer.gasOut, sensT_ExhaustOut_Econ.inlet) annotation(
Line(points = {{10, 30}, {44, 30}, {44, 30}, {44, 30}}, color = {159, 159,
223}));
connect(sensT_ExhaustIn_Econ.outlet, Economizer.gasIn) annotation(
Line(points = {{-44, 30}, {-10, 30}, {-10, 30}, {-10, 30}}, color = {159,
159, 223}));
connect(Economizer.waterOut, sensT_WaterOut_Econ.inlet) annotation(
Line(points = {{0, 20}, {0, 20}, {0, 6}, {0, 6}}, color = {0, 0, 255}));
connect(sensT_WaterIn_Econ.outlet, Economizer.waterIn) annotation(
Line(points = {{0, 54}, {0, 54}, {0, 40}, {0, 40}}, color = {0, 0, 255}));
connect(VoidFractionSensor.y, VoidFraction) annotation(
Line(points = {{58, -42}, {104, -42}, {104, -42}, {110, -42}}, color = {0,
0, 127}));
connect(Evaporator.voidFraction, VoidFractionSensor.u) annotation(
Line(points = {{10, -44}, {46, -44}, {46, -42}, {46, -42}}, color = {0, 0,
127}));
connect(sensT_ExhaustOut_Evap.outlet, Sink_FlueGas.flange) annotation(
Line(points = {{56, -70}, {70, -70}, {70, -70}, {84, -70}, {84, -70}, {84,
-70}}, color = {159, 159, 223}));
connect(Evaporator.gasOut, sensT_ExhaustOut_Evap.inlet) annotation(
Line(points = {{10, -50}, {26, -50}, {26, -70}, {44, -70}}, color = {159,
159, 223}));
connect(sensT_ExhaustOut_Econ.outlet, Evaporator.gasIn) annotation(
Line(points = {{56, 30}, {68, 30}, {68, -20}, {-50, -20}, {-50, -20},
{-70, -20}, {-70, -50}, {-10, -50}, {-10, -50}}, color = {159, 159,
223}));
connect(sensT_WaterOut_Econ.outlet, Evaporator.waterIn) annotation(
Line(points = {{0, -6}, {0, -40}}, color = {0, 0, 255}));
connect(Evaporator.waterOut, Sink_Steam.flange) annotation(
Line(points = {{0, -60}, {0, -90}}, color = {0, 0, 255}));
connect(Source_FlueGas.flange, sensT_ExhaustIn_Econ.inlet) annotation(
Line(points = {{-82, 30}, {-56, 30}}, color = {159, 159, 223}));
connect(Source_Steam.flange, sensT_WaterIn_Econ.inlet) annotation(
Line(points = {{0, 90}, {0, 66}}, color = {0, 0, 255}));
annotation(
uses(ThermoPower(version = "3.1"), Modelica(version = "3.2.3")));end
ThermoPower_HRSG_Econ_Evap;

Open MOdelica Pumping Fluid through Swept volume

I have the following code, it is throwing errors related to Translation warning. I am using a swept volume to pump fluid from a tank to pipe and to the sink. ANy help would be appreciated.
model Trial2 "Model of a pumping system"
import Modelica.Fluid;
inner Modelica.Fluid.System system annotation(
Placement(visible = true, transformation(origin = {30, -42}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Pipes.StaticPipe pipe(redeclare package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater, allowFlowReversal = true, diameter = 0.3, height_ab = 100, length = 100) annotation(
Placement(visible = true, transformation(origin = {46, -6}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Sensors.Pressure pressuretranducer annotation(
Placement(visible = true, transformation(origin = {37, 29}, extent = {{-11, -11}, {11, 11}}, rotation = 0)));
Modelica.Fluid.Sources.FixedBoundary sink(redeclare package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater, nPorts = 1, p = 0, use_p = true) annotation(
Placement(visible = true, transformation(origin = {48, 66}, extent = {{-10, -10}, {10, 10}}, rotation = 180)));
Modelica.Fluid.Machines.SweptVolume sweptVolume1(redeclare package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater, T_start = system.T_start, clearance = 5, nPorts = 2, pistonCrossArea = 50, portsData = {Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(diameter = 0.3), Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(diameter = 0.3)}, use_HeatTransfer = false, use_T_start = true, use_portsData = true) annotation(
Placement(visible = true, transformation(origin = {6, 30}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Blocks.Sources.Sine sine1(amplitude = 50, freqHz = 5) annotation(
Placement(visible = true, transformation(origin = {-62, 62}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.Translational.Sources.Force force1(useSupport = false) annotation(
Placement(visible = true, transformation(origin = {-18, 62}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));
Modelica.Fluid.Vessels.OpenTank tank(redeclare package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater, crossArea = 50, height = 60, level(start = 50), level_start = 50, nPorts = 1, portsData = {Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(diameter = 0.3)}, use_HeatTransfer = false, use_T_start = true, use_portsData = true) annotation(
Placement(visible = true, transformation(origin = {-37, 23}, extent = {{-9, -9}, {9, 9}}, rotation = 0)));
equation
connect(tank.ports[1], sweptVolume1.ports[1]) annotation(
Line(points = {{-37, 14}, {4, 14}, {4, 20}, {6, 20}}, color = {0, 127, 255}, thickness = 0.5));
connect(pressuretranducer.port, pipe.port_a) annotation(
Line(points = {{37, 18}, {16, 18}, {16, -6}, {36, -6}}, color = {0, 127, 255}));
connect(force1.flange, sweptVolume1.flange) annotation(
Line(points = {{-8, 62}, {6, 62}, {6, 40}, {6, 40}}, color = {0, 127, 0}));
connect(sine1.y, force1.f) annotation(
Line(points = {{-50, 62}, {-30, 62}, {-30, 62}, {-30, 62}}, color = {0, 0, 127}));
connect(pipe.port_b, sink.ports[1]) annotation(
Line(points = {{56, -6}, {73, -6}, {73, 66}, {38, 66}}, color = {0, 127, 255}));
connect(sweptVolume1.ports[2], pipe.port_a) annotation(
Line(points = {{6, 20}, {9, 20}, {9, -6}, {36, -6}}, color = {0, 127, 255}, thickness = 0.5));
annotation(
uses(Modelica(version = "3.2.2")));
end Trial2;
You have forgotten to set the medium to water in the pressureTransducer (similarly as in all the other components).
I haven't checked with OpenModelica - but at least with Dymola that suffices to make it simulate.