I have a dataset:
[
{
"_id": 1,
"Data": {
"a": {
"levela": {
"fname": "fname",
"lname": "lname"
},
"levelfacility": []
}
}
},
{
"_id": 2,
"Data": {
"a": {
"levela": {},
"levelfacility": [
{
"facility": "facility"
}
]
}
}
},
{
"_id": 3,
"Data": {
"a": {
"levela": {},
"levelfacility": []
}
}
}
]
I want to apply an upper case to the values only if exists but when I apply a $set, it just is an empty string if it doesn't exist.
[
{
"_id": 1,
"Data": {
"a": {
"levela": {
"fname": "fname",
"fnameNORM": "FNAME",
"lname": "lname"
},
"levelfacility": []
}
}
},
{
"_id": 2,
"Data": {
"a": {
"levela": {},
"levelfacility": [
{
"facility": "facility",
"facilityNORM": "FACILITY"
}
]
}
}
},
{
"_id": 2,
"Data": {
"a": {
"levela": {},
"levelfacility": []
}
}
}
]
I want to apply something like a $conditional so I am not left with new fields with the original field doesnt exist
I have tried this for a string
{
$set: {
"Data.a.levela.fnameNORM": {
$cond: {
if: {
"$Data.a.levela.fname": {
$exist: true
}
},
then: {
$toUpper: "$Data.a.levela.fname"
},
else: "$$REMOVE"
}
}
}
}
I have tried this for an array
{
$set: {
"Data.a.levelfacility": {
$map: {
input: "$Data.a.levelfacility",
in: {
$mergeObjects: [
"$$this",
{
"facilityNORM": {
$cond: {
if: {
"$$this.FacilityName": {
$exist: true
}
},
then: {
$toUpper: "$$this.FacilityName"
},
else: "$$REMOVE"
}
}
}
]
}
}
}
}
}
You are actually on the right track. Just use $map to handle levelfacility array.
db.collection.aggregate([
{
"$addFields": {
"Data.a.levela": {
"$cond": {
"if": {
$ne: [
{
"$ifNull": [
"$Data.a.levela.fname",
null
]
},
null
]
},
"then": {
"fname": "$Data.a.levela.fname",
"fnameNORM": {
"$toUpper": "$Data.a.levela.fname"
}
},
"else": "$Data.a.levela"
}
}
}
},
{
"$addFields": {
"Data.a.levelfacility": {
"$map": {
"input": "$Data.a.levelfacility",
"as": "lf",
"in": {
"$cond": {
"if": {
$ne: [
{
"$ifNull": [
"$$lf.facility",
null
]
},
null
]
},
"then": {
"facility": "$$lf.facility",
"facilityNORM": {
"$toUpper": "$$lf.facility"
}
},
"else": "$$lf"
}
}
}
}
}
}
])
Here is the Mongo playground for your reference.
Related
I am having a similar collection
db={
collectionA: [
{
"id": ObjectId("63b7c24c06ebe7a8fd11777b"),
"uniqueRefId": "UUID-2023-0001",
"products": [
{
"productIndex": 1,
"isProdApproved": false,
"productCategory": ObjectId("63b7c24c06ebe7a8fd11777b"),
"productOwners": [
{
_id: ObjectId("63b7c2fd06ebe7a8fd117781"),
iApproved: false
},
{
_id: ObjectId("63b7c2fd06ebe7a8fd117782"),
iApproved: false
}
]
},
{
"productIndex": 2,
"isProdApproved": false,
"productCategory": ObjectId("63b7c24c06ebe7a8fd11777b"),
"productOwners": [
{
_id: ObjectId("63b7c2fd06ebe7a8fd117781"),
iApproved: false
},
{
_id: ObjectId("63b7c2fd06ebe7a8fd117783"),
iApproved: false
}
]
},
{
"productIndex": 3,
"productCategory": "",
"productOwners": ""
}
]
}
]
}
I want to find the productOwner whose _id is 63b7c2fd06ebe7a8fd117781 in the productOwners and update the isApproved and isprodApproved to true. Other data will remain as it is.
I have tried this but it is only updating the first occurance
db.collectionA.update(
{
_id: ObjectId('63b7c24c06ebe7a8fd11777b'),
'products.productOwners._id': ObjectId('63b7c2fd06ebe7a8fd117781'),
},
{ $set: { 'products.$.productOwners.$[x].isApproved': true } },
{ arrayFilters: [{ 'x._id': ObjectId('63b7c2fd06ebe7a8fd117781') }] }
);
This one should work:
db.collection.updateMany({},
[
{
$set: {
products: {
$map: {
input: "$products",
as: "product",
in: {
$cond: {
if: { $eq: [{ $type: "$$product.productOwners" }, "array"] },
then: {
$mergeObjects: [
"$$product",
{ isProdApproved: { $in: [ObjectId("63b7c2fd06ebe7a8fd117781"), "$$product.productOwners._id"] } },
{
productOwners: {
$map: {
input: "$$product.productOwners",
as: 'owner',
in: {
$mergeObjects: [
"$$owner",
{ iApproved: { $eq: ["$$owner._id", ObjectId("63b7c2fd06ebe7a8fd117781")] } }
]
}
}
}
}
]
},
else: "$$product"
}
}
}
}
}
}
]
)
However, the data seem to be redundant. Better update only products.productOwners.iApproved and then derive products.isProdApproved from nested elements:
db.collection.aggregate([
{
$set: {
products: {
$map: {
input: "$products",
as: "product",
in: {
$cond: {
if: { $eq: [{ $type: "$$product.productOwners" }, "array"] },
then: {
$mergeObjects: [
"$$product",
{ isProdApproved: { $anyElementTrue: ["$$product.productOwners.iApproved"] } },
]
},
else: "$$product"
}
}
}
}
}
}
])
In my example project, I have employees under manager. Db schema is like this;
{
"employees": [
{
"name": "Adam",
"_id": "5ea36b27d7ae560845afb88e",
"bananas": "allowed"
},
{
"name": "Smith",
"_id": "5ea36b27d7ae560845afb88f",
"bananas": "not-allowed"
},
{
"name": "John",
"_id": "5ea36b27d7ae560845afb88g",
"bananas": "not-allowed"
},
{
"name": "Patrick",
"_id": "5ea36b27d7ae560845afb88h",
"bananas": "allowed"
}
]
}
In this case Adam is allowed to eat bananas and Smith is not. If I have to give the permission of eating bananas from Adam to Smith I need to perform update operation twice like this:
db.managers.update(
{ 'employees.name': 'Adam' },
{ $set: { 'employees.$.bananas': 'not-allowed' } }
);
and
db.managers.update(
{ 'employees.name': 'Smith' },
{ $set: { 'employees.$.bananas': 'allowed' } }
);
Is it possible to handle this in a single query?
You can use $map and $cond to perform conditional update to the array entries depending on the name of the employee. A $switch is used for potential extension of cases.
db.collection.update({},
[
{
"$set": {
"employees": {
"$map": {
"input": "$employees",
"as": "e",
"in": {
"$switch": {
"branches": [
{
"case": {
$eq: [
"$$e.name",
"Adam"
]
},
"then": {
"$mergeObjects": [
"$$e",
{
"bananas": "not-allowed"
}
]
}
},
{
"case": {
$eq: [
"$$e.name",
"Smith"
]
},
"then": {
"$mergeObjects": [
"$$e",
{
"bananas": "allowed"
}
]
}
}
],
default: "$$e"
}
}
}
}
}
}
])
Mongo Playground
db.managers.update(
{
$or: [
{"employees.name": "Adam"},
{"employees.name": "Smith"}
]
},
{
$set: {
"employees.$[e].bananas": {
$cond: [{ $eq: ["$e.name", "Adam"] }, "not-allowed", "allowed"]
}
}
},
{
arrayFilters: [{ "e.name": { $in: ["Adam", "Smith"] } }]
}
)
MongoDB 5.0.9
I am trying to get
value of application within course and their specification
value of paid application ( status : paid) based on course and their specification
courses collection having multiple courses with specification which might be there maybe not
[
{
"_id": {
"$oid": "62aab6669b3740313d881a30"
},
"course_name": "Master",
"fees": "Rs.1000.0/-",
"course_specialization": [
{
"spec_name": "Social Work",
"is_activated": true
}
],
"college_id": {
"$oid": "628dfd41ef796e8f757a5c13"
},
"is_pg": true
},
{
"_id": {
"$oid": "62aab6669b3740313d881a38"
},
"college_id": {
"$oid": "628dfd41ef796e8f757a5c13"
},
"course_name": "BBA",
"fees": "Rs.1000.0/-",
"is_pg": false,
"course_specialization": null
},
{
"_id": {
"$oid": "628f3967cb69fc0789e69181"
},
"course_name": "BTech",
"fees": "Rs.1000.0/-",
"course_specialization": [
{
"spec_name": "Computer Science and Engineering",
"is_activated": true
},
{
"spec_name": "Mutiple Specs",
"is_activated": true
}
],
"college_id": {
"$oid": "628dfd41ef796e8f757a5c13"
},
"is_pg": false
},
{
"_id": {
"$oid": "628f35a1cb69fc0789e6917e"
},
"course_name": "Bachelor",
"fees": "Rs.1000.0/-",
"course_specialization": [
{
"spec_name": "Social Work",
"is_activated": true
}
],
"college_id": {
"$oid": "628dfd41ef796e8f757a5c13"
},
"is_pg": false
}
],
Student Application forms collection where we are storing student application forms details
[
{
"_id": {
"$oid": "62cd476adbc878a0490e20ee"
},
"spec_name1": "Social Work",
"spec_name2": "",
"spec_name3": "",
"student_id": {
"$oid": "62cd1374dbc878a0490e20a5"
},
"course_id": {
"$oid": "62aab6669b3740313d881a30"
},
"current_stage": 2.5,
"declaration": true,
"payment_info": {
"payment_id": "123458",
"status": "paid"
},
"enquiry_date": {
"$date": {
"$numberLong": "1657620330432"
}
},
"last_updated_time": {
"$date": {
"$numberLong": "1657621796062"
}
}
},
{
"_id": {
"$oid": "62cd476adbc878a0490e20ef"
},
"spec_name1": "",
"spec_name2": "",
"spec_name3": "",
"student_id": {
"$oid": "62cd1374dbc878a0490e20a5"
},
"course_id": {
"$oid": "62aab6669b3740313d881a38"
},
"current_stage": 2.5,
"declaration": true,
"payment_info": {
"payment_id": "123458",
"status": "paid"
},
"enquiry_date": {
"$date": {
"$numberLong": "1657620330432"
}
},
"last_updated_time": {
"$date": {
"$numberLong": "1657621796062"
}
}
},
{
"_id": {
"$oid": "62cdc12000b820f5ea58cc60"
},
"spec_name1": "Social Work",
"spec_name2": "",
"spec_name3": "",
"student_id": {
"$oid": "62cdad90a9b64d58b15e6976"
},
"course_id": {
"$oid": "628f35a1cb69fc0789e6917e"
},
"current_stage": 6.25,
"declaration": false,
"payment_info": {
"payment_id": "",
"status": ""
},
"enquiry_date": {
"$date": {
"$numberLong": "1657651488511"
}
},
"last_updated_time": {
"$date": {
"$numberLong": "1657651987155"
}
}
}
]
Desired output with every specification within the course
[
"_id": {
"coursename": "Master",
"spec": "Social Work",
"Application_Count": 1,
"Paid_Application_Count:0
},
{
"_id": {
"coursename": "Bachelor"
"spec":"" ,
"Application_Count": 1,
"Paid_Application_Count:0
},
{
"_id": {
"coursename": "BBA"
"spec":"" ,
"Application_Count": 1,
"Paid_Application_Count:1
},
]
Aggregation Query
[{
$match: {
college_id: ObjectId('628dfd41ef796e8f757a5c13')
}
}, {
$project: {
_id: 1,
course_name: 1,
course_specialization: 1
}
}, {
$unwind: {
path: '$course_name',
includeArrayIndex: 'course_index',
preserveNullAndEmptyArrays: true
}
}, {
$unwind: {
path: '$course_specialization',
includeArrayIndex: 'course_specs_index',
preserveNullAndEmptyArrays: true
}
}, {
$lookup: {
from: 'studentApplicationForms',
'let': {
id: '$_id',
spec: '$course_specialization.spec_name'
},
pipeline: [
{
$match: {
$expr: {
$and: [
{
$eq: [
'$course_id',
'$$id'
]
},
{
$eq: [
'$spec_name1',
'$$spec'
]
}
]
}
}
},
{
$project: {
student_id: 1,
payment_info: 1,
spec_name1: 1,
spec_name2: 1,
spec_name3: 1
}
}
],
as: 'student_application'
}
}, {
$unwind: {
path: '$student_application',
includeArrayIndex: 'application',
preserveNullAndEmptyArrays: true
}
}, {
$facet: {
course: [
{
$group: {
_id: {
course_name: '$course_name',
spec: '$course_specialization'
},
count: {
$count: {}
}
}
}
],
declatration: [
{
$group: {
_id: {
course_name: '$course_name',
spec: '$course_specialization'
},
count_dec: {
$sum: {
$cond: [
'$student_application.declaration',
1,
0
]
}
}
}
}
],
payment: [
{
$group: {
_id: {
course_name: '$course_name',
spec: '$course_specialization'
},
payment: {
$sum: {
$eq: [
'$student_application.payment_info.status',
'paid'
]
}
}
}
}
]
}
}]
Problem :
I am able to get application count but it is not getting unique value if 2 specs are same then duplicate value is coming as you can see on sample application collection Social Work is in two different course . So my aggregations is not grouping them based in course name.specs
Not able to find correct Paid_Application_Count and Application_Count
Update :
Updated JSON Data Matching use cases with different type of data
MongoDB Playground
You can do it in several different ways, I took the liberty to simplify the pipeline a little bit.
I will just mention that the structure does not fully make sense to me, and there are some additional contradictions between the sample input you provided and the "text" description/pipeline description.
Just a tiny example is payment_info_status being paid in the sample and capture in the pipeline.
These things will not change the pipeline structure, will just need to be fixed by you based on the actual needs.
db.courses.aggregate([
{
$project: {
_id: 1,
course_name: 1,
course_specialization: 1
}
},
{
$unwind: {
path: "$course_specialization",
preserveNullAndEmptyArrays: true
}
},
{
$lookup: {
from: "studentApplicationForms",
"let": {
courseId: "$_id",
spec: {
$ifNull: [
"$course_specialization.spec_name",
""
]
}
},
pipeline: [
{
$match: {
$expr: {
$and: [
{
$eq: [
"$spec_name1",
"$$spec"
]
},
{
$eq: [
"$$courseId",
"$course_id"
]
}
]
}
}
},
{
$project: {
student_id: 1,
payment_info: 1,
spec_name1: 1,
spec_name2: 1,
spec_name3: 1,
declaration: 1,
}
},
{
$group: {
_id: null,
count: {
$sum: 1
},
declatration: {
$sum: {
$cond: [
"$declaration",
1,
0
]
}
},
paid: {
$sum: {
$cond: [
{
$eq: [
"$payment_info.status",
"paid"
]
},
1,
0
]
}
},
}
}
],
as: "student_application"
}
},
{
$project: {
_id: {
coursename: "$course_name",
spec: "$course_specialization.spec_name",
Application_count: {
$ifNull: [
{
$first: "$student_application.count"
},
0
]
},
Declaration_count: {
$ifNull: [
{
$first: "$student_application.declatration"
},
0
]
},
Paid_Application_Count: {
$ifNull: [
{
$first: "$student_application.paid"
},
0
]
},
}
}
}
])
Mongo Playground
I have a collection of users, each user has a profile. I want to implement a query to make statistics on users.
This is my collection.
[
{
"_id": ObjectId("61d2db0d273a9076d630697b"),
"state": "VALIDATED",
"phone": "xxx",
"civilStatus": "SINGLE",
"gender": "MALE",
"professionalCategory": "STUDENT"
}
]
I want the result to contain an array of all genders of users in the database, and the number of users with each gender. same for civilStatus and professionalCategories
This is the result i am looking for :
{
"total": 2000
"validated": 1800,
"genders": [
{
"value": "MALE",
"count": 1200
},
{
"value": "FEMALE",
"count": 600
}
],
"civilStatus": [
{
"value": "SINGLE",
"count": "300"
}
...
],
"professionalCategories": [
{
"value": "STUDENT",
"count": "250"
}
...
]
}
I implemented the query, but I still have a few things that I don't know how to do.
db.getCollection("users").aggregate([
{
$group: {
_id: null,
validated: {
$sum: {
$cond: {
if: { $eq: ["$state", "VALIDATED"] },
then: 1,
else: 0
}
}
},
genders: {
$push: "$gender"
},
civilStatus: {
$push: "$civilStatus"
},
professionalCategories: {
$push: "$professionalCategory"
}
}
}
])
This is the result of this query :
{
"total": 2000
"validated": 1800,
"genders": [
"MALE",
"MALE",
"FEMALE",
"MALE",
"FEMALE",
"FEMALE"
...
],
"civilStatus": [
"SINGLE",
"MARIED",
"SINGLE",
...
],
"professionalCategories": [
"STUDENT",
"WORKER",
"RETIRED"
...
]
}
I miss how to group each gender, civil Status and professional Category and calculate the number of users for each one.
I also tried this query, but I don't know how to complete the "count" field for each item of the array :
db.getCollection("users").aggregate([
{
$group: {
_id: null,
validated: {
$sum: {
$cond: {
if: { $eq: ["$state", "VALIDATED"] },
then: 1,
else: 0
}
}
},
genders: {
$addToSet: {
value: "$gender",
count: {
//
}
}
},
civilStatus: {
$addToSet: {
value: "$civilStatus",
count: {
//
}
}
},
professionalCategories: {
$addToSet: {
value: "$professionalCategory",
count: {
//
}
}
},
}
}
])
if the query was to treat only one field, for example gender. it would have been easier with "unwind". but here I have 3 fields.
can someone help me please?
You can use following aggregation
Here is the code
db.collection.aggregate([
{
"$facet": {
"genders": [
{
"$group": {
"_id": "$gender",
"total": { $sum: 1 }
}
}
],
"civilStatus": [
{
"$group": {
"_id": "$civilStatus",
"total": { $sum: 1 }
}
}
],
"professionalCategory": [
{
"$group": {
"_id": "$professionalCategory",
"total": { $sum: 1 }
}
}
],
"validated": [
{
"$group": {
"_id": "$state",
"total": { "$sum": 1 }
}
}
]
}
},
{
$set: {
validated: {
"$filter": {
"input": "$validated",
"cond": {
"$eq": [ "$$this._id", "VALIDATED" ]
}
}
}
}
},
{
$set: {
validated: {
"$ifNull": [
{
"$arrayElemAt": [ "$validated", 0 ]
},
0
]
}
}
},
{
$set: { validated: "$validated.total" }
}
])
Working Mongo playground
I need to fetch distinct nested documents.
Please find the sample document:
{
"propertyId": 1001820437,
"date": ISODate("2020-07-17T00:00:00.000Z"),
"HList":[
{
"productId": 123,
"name": "Dubai",
"tsh": true
}
],
"PList":[
{
"productId": 123,
"name": "Dubai",
"tsh": false
},
{
"productId": 234,
"name": "India",
"tsh": true
}
],
"CList":[
{
"productId": 234,
"name": "India",
"tsh": false
}
]
}
Expected result is:
{
"produts":[
{
"productId": 123,
"name": "Dubai"
},
{
"productId": 234,
"name": "India"
}
]
}
I tried with this query:
db.property.aggregate([
{
$match: {
"propertyId": 1001820437,
"date": ISODate("2020-07-17T00:00:00.000Z")
}
},
{
"$project": {
"_id": 0,
"unique": {
"$filter": {
"input": {
"$setDifference": [
{
"$concatArrays": [
"$HList.productId",
"$PList.productId",
"$CList.productId"
]
},
[]
]
},
"cond": {
"$ne": [ "$$this", "" ]
}
}
}
}
}
]);
Is $setDifference aggregation is correct choice here?
My query returns only unique product ids but i need a productId with name.
Could someone help me to solve this?
Thanks in advance
You can use $projectfirst to get rid of tsh field and then run $setUnion which ignores duplicated entries:
db.collection.aggregate([
{
$project: {
"HList.tsh": 0,
"PList.tsh": 0,
"CList.tsh": 0,
}
},
{
$project: {
products: {
$setUnion: [ "$HList", "$PList", "$CList" ]
}
}
}
])
Mongo Playground
The following two aggregations return the expected and same result (you can use any of the two):
db.collection.aggregate( [
{
$project: {
_id: 0,
products: {
$reduce: {
input: { $setUnion: [ "$HList", "$PList", "$CList" ] },
initialValue: [],
in: {
$setUnion: [ "$$value", [ { productId: "$$this.productId", name: "$$this.name" } ] ]
}
}
}
}
}
] )
This one is little verbose:
db.collection.aggregate( [
{
$project: { list: { $setUnion: [ "$HList", "$PList", "$CList" ] } }
},
{
$unwind: "$list"
},
{
$group: {
_id: null,
products: { $addToSet: { "productId": "$list.productId", "name": "$list.name" } }
}
},
{
$project: { _id: 0 }
}
] )
db.collection.aggregate([
{
$match: {
"propertyId": 1001820437,
"date": ISODate("2020-07-17T00:00:00.000Z")
}
},
{
$project: {
products: {
$filter: {
input: { "$setUnion" : ["$CList", "$HList", "$PList"] },
as: 'product',
cond: {}
}
}
}
},
{
$project: {
"_id":0,
"products.tsh": 1,
"products.name": 1,
}
},
])