Related
Hello I'am suffered from a problem
As you can see I want a draw 3D graph.
Problem is when I draw sphere lines are invisible.
Here is simple version of my source
clear all; close all; clc
n=1;
n_inner_drone=3;
n_outter_drone=2;
length=100;
initial_d = zeros(1,n);
inner_x = zeros(n_inner_drone,n);
inner_y = zeros(n_inner_drone,n);
inner_z = zeros(n_inner_drone,n);
outter_x = zeros(n_outter_drone,n);
outter_y = zeros(n_outter_drone,n);
outter_z = zeros(n_outter_drone,n);
radius= length;
disp('test');
%%%%%%%%%%%%%%%%%%%%%% Sphere
% figure()
% [x, y, z] = sphere;
% h = surfl(x*length, y*length, z*length);
% hSurf = surf(X,Y,Z,'EdgeColor','none','LineStyle','none','FaceLighting','phong');
% set(h, 'FaceAlpha', 0.05)
% surf(x*length, y*length, z*length,
% shading interp
hold on
%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:n_inner_drone
k=1;
while 1
x_temp= randi([-length, length], 1, 1);
y_temp= randi([-length, length], 1, 1);
z_temp= randi([-length, length], 1, 1);
dist = sqrt(x_temp^2 + y_temp^2 + z_temp^2);
if dist<radius
if i==1
initial_d(k) = dist;
end
inner_x(i,k) = x_temp;
inner_y(i,k) = y_temp;
inner_z(i,k) = z_temp;
k = k+1;
end
if k == n+1, break, end
end
end
ideal_direction_length = ones(1,n);
ideal_direction_length = ideal_direction_length * length;
ideal_direction_length = ideal_direction_length - initial_d;
k=1;
random_x = inner_x(1,:);
random_y = inner_y(1,:);
random_z = inner_z(1,:);
random_moving_distance = zeros(1,n);
moving_distance = 0;
trigger = 0;
while 1
if trigger == 0
direction = randi([1, 6], 1, 1);
trigger = 1;
end
if direction == 1
random_x(k) = random_x(k) + 1;
elseif direction == 2
random_x(k) = random_x(k) - 1;
elseif direction == 3
random_y(k) = random_y(k) + 1;
elseif direction == 4
random_y(k) = random_y(k) - 1;
elseif direction == 5
random_z(k) = random_z(k) + 1;
elseif direction == 6
random_z(k) = random_z(k) - 1;
end
dist = sqrt(random_x(k)^2 + random_y(k)^2 + random_z(k)^2);
moving_distance = moving_distance+1;
%%%%%%%%%% Line
plot3(random_x(n),random_y(n),random_z(n),'k+')
%%%%%%%%%%%%%%%
if dist>radius
random_moving_distance(k) = moving_distance;
k = k+1;
moving_distance = 0;
trigger = 0;
end
if k == n+1, break, end
end
plot3(inner_x(1,n),inner_y(1,n),inner_z(1,n),'r*')
for k=2:n_inner_drone
plot3(inner_x(k,n),inner_y(k,n),inner_z(k,n),'b*')
end
for k=1:n_outter_drone
plot3(outter_x(k,n),outter_y(k,n),outter_z(k,n),'k*')
end
At the first, I suspected I worngly draw lines, but without sphere I can see lines as fig2.
Those anyone who knows about this problem.
Please answer to me and I will very appericiate about it.
Thanks for reading.
I think it is because:
plot3(gravity_x(n),gravity_y(n),gravity_z(n))
is not a line. Its a single point.
plot3(gravity_x(n:n+1),gravity_y(n:n+1),gravity_z(n:n+1))
is a line.
I currently have an error that i can't pass this is the short code and everything needed in order to have a general idea about my problem
clear;
close all; clear ;
load fisheriris;
m = meas;
d = num2cell(m);
d(:,5) = species(:,1);
c = cvpartition(d(:,5),'kfold',10);
CeDam = cell(10,1);
CeVrem = cell(10,1);
for i=1:10
CeDam{i} = [d(test(c,i),1) d(test(c,i),2) d(test(c,i),3) d(test(c,i),4)]';
end
for i=1:10
CeVrem{i} = d(test(c,i),5)';
end
for i = 1:10
a = CeVrem{i};
[n,m] = size(a);
for j = 1:n
for k = 1:m
if isequal(a(j,k),'setosa') a{n,m} = [1 0 0];
elseif isequal(a(j,k),'versicolor') a{n,m} = [0 1 0];
else a{j,k} = [0,0,1];
end
end
end
CeVrem{i} = a;
end
net = newff(cell2mat(minmax(CeDam{1})),[3 3 3],{'logsig','logsig','logsig',},'trainlm');
net.LW{2,1} = net.LW{2,1}*0.5;
net.b{2} = net.b{2}*2;
net.performFcn = 'mse';
net.trainParam.epochs = 100;
err = 0;
i = 1;
j = 1;
while i <= 10
while j <= 10
if i~=j net = train(net,CeDam{j},CeVrem{j});
end
j=j+1;
end
end
in the train part of the algorithm it gives me an input mistmatch which is very odd for me.
The error messages:
Error using trainlm (line 109) Number of inputs does not match
net.numInputs.
Error in network/train (line 106) [net,tr] =
feval(net.trainFcn,net,X,T,Xi,Ai,EW,net.trainParam);
i managed to fix everything after much work here is the code that works for anyone having the same problem in the future gl :D :).
clear;
close all; clear ;
load fisheriris;
m = meas;
d = num2cell(m);
d(:,5) = species(:,1);
c = cvpartition(d(:,5),'kfold',10);
CeDam = cell(10,1);
CeVrem = cell(10,1);
for i=1:10
CeDam{i} = [m(test(c,i),1) m(test(c,i),2) m(test(c,i),3) m(test(c,i),4)]';
end
for i=1:10
CeVrem{i} = d(test(c,i),5);
end
for i = 1:10
a = CeVrem{i}';
[n,m] = size(a);
b = zeros(3,m);
for j = 1:n
for k = 1:m
if isequal(a(j,k),{'setosa'}) b(1,k) = 1; b(2,k) = 0; b(3,k) = 0;
elseif isequal(a(j,k),{'versicolor'}) b(1,k) = 0; b(2,k) = 1; b(3,k) = 0;
else b(1,k) = 0; b(2,k) = 0; b(3,k) = 1;
end
end
end
CC{i} = b;
end
CC = CC';
net = newff(minmax(CeDam{1}),[3 3 3],{'logsig','logsig','logsig'},'trainlm');
net.LW{2,1} = net.LW{2,1}*0.6;
net.b{2} = net.b{2}*2;
net.performFcn = 'mse';
net.trainParam.epochs = 100;
errglob = 0;
i = 1;
j = 1;
while i <= 10
while j <= 10
if i~=j net = train(net,CeDam{j},CC{j});
end
j=j+1;
end
y=sim(net,CeDam{i});
y=round(y);
e = y - CC{i};
errcur=mse(net,CC{i},y);
errglob = errglob + mse(net,CC{i},y);
fprintf('Avem o eroare de %.2f pe foldul %d \n',errcur,i)
i=i+1;
end
errglob/10
this thread can be closed thx :)
I think you got some problems with mixing up cell and array formats...
Try to replace:
net = train(net,CeDam{j},CeVrem{j});
by:
net = train(net,cell2mat(CeDam{j}),cell2mat(CeVrem{j}')');
AND: please remove your infinite loops in i, by adding i=i+1; or replace the while loops by more natural for loops, e.g.
for i = 1:10
for j = 1:10
if i~=j
net = train(net,cell2mat(CeDam{j}),cell2mat(CeVrem{j}')');
end
end
end
AND: Where are you using your i inside the loop? I guess something is missing there...
I am trying to implement a wireless sensor network simulator on matlab and I need your help.
This is exactly what I want to do:
Deploy nodes randomly in a 2D plane.
Model a group leader election algorithm using two conditions:
a) Energy: generate random energy values associated with each of the sensors, the sensor node with the maximum energy has higher probability of being selected as leader.
b) Proximity: the sensor node that is mostly surrounded by neighboring nodes has higher probability of being selected.
So, for a random node that has maximum energy and more neighbors can be selected as leader and plotted with the rest of the nodes in a different color.
I have been working on this, trying to develop my code all to no avail. I am not really good with matlab coding, I am still learning.
Please guys, I need any help I can get on this, my deadline is imminent.
Thanks,
Ike
First of all building a wireless networks simulator using matlab is by far not the best choice to do. its better to use specialized simulators such as NS2 or Omnet++. however, I have developed once a simple m-file code to randomly deploy points in a square are and try to link between these points according to the distance between these points. the points are assumed to be sensor nodes.
try to modify on it to get what you need. please vote up if this answer was useful to you:
W=0;X=0;Y=0;Z=0;
nodedistance = zeros();
maxx = 400; maxy=400; maxn = 50;
q = zeros(maxn);
e = rand(maxn,1)*100;
nodeloc = rand(maxn, 2)* maxx;
node(maxn) = struct('NodeNum',zeros(maxn),'nEnergy',zeros(maxn),'Loc',[zeros(maxn,1), zeros(maxn,2)]);
rss(maxn,maxn) = struct('NodeNumber',zeros(maxn),'NodeDistance',zeros(maxn));
for a = 1:100,
m = 2;
node = struct();
rss = struct();
nodedistance = zeros();
maxx = 400; maxy=400; maxn = 50;
q = zeros(maxn);
e = rand(maxn,1)*100;
nodeloc = rand(maxn, 2)* maxx;
for i = 1: maxn,
node(i)=struct('NodeNum',i,'nEnergy',e(i),'Loc',[nodeloc(i, 1), nodeloc(i, 2)]);
end
for i = 1:maxn,
for j = 1:maxn,
rss(i,j) = struct('NodeNumber',i,'NodeDistance',sqrt((node(i).Loc(1)- node(j).Loc(1))^2+(node(i).Loc(2)-node(j).Loc(2))^2));
end
end
for i = 1:maxn,
for j = 1:maxn,
nodedistance(i,j)=rss(i,j).NodeDistance;
end
end
for i = 1:maxn,
for j = 1:maxn,
if (node(i).nEnergy > 0) && (node (j).nEnergy > 0) && (0 < nodedistance(i,j) && nodedistance(i,j) <= 30)
if (node(i).nEnergy < node (j).nEnergy) %|| ( (node(i).nEnergy == node (j).nEnergy )&& (0 < nodedistance(i,j) && nodedistance(i,j)) < 30) %|| (0 < nodedistance(i,j) && nodedistance(i,j) <= 30)
q(i,j) = 1;
elseif node(i).nEnergy == node (j).nEnergy && 0 < nodedistance(i,j) && nodedistance(i,j) < 30
q(i,j) = 1;
else if 0 < nodedistance(i,j) && nodedistance(i,j) <= 30
q(i,j) = 1;
else
q(i,j) = 0;
end
end
end
end
end
end
for i = 1:maxn,
for j = 1:maxn,
if q(i,j) == 1
q(j,i) = 1;
end
end
end
colordef white,
figure(1);
axis equal
for i = 1:maxn,
hold on
box on;
plot(nodeloc(i, 1), nodeloc(i, 2), 'k.', 'MarkerSize', 5);
lscatter(nodeloc(i, 1),nodeloc(i, 2),i);
grid on;
end
gplot(q,nodeloc,'r-');
c = q;
b = 0; zeros(maxn);
check = 1;
while (check)
for m = 2:30
p = size(b)
b = zeros(maxn,maxn);
for i = 1:maxn,
for j = 1:maxn,
if i ~= j
if c(i,j) == 0
for k = 1:maxn,
if c(i,k) >0 && q(k,j) >0
b(i,j) = m;
break
else b(i,j) = 0;
end
end
end
end
end
end
f = size(b)
c = c + b;
if b ==0
check = 0;
else b = 0;% while loop here the condition.
m = m + 1;
end
end
k = 0;
for i = 1:maxn,
for j = 1:maxn,
k = k + c(i,j);
end
end
average_hop = k/(maxn*(maxn-1));
o = 0;
for i = 1:maxn,
for j = 1:maxn,
if c(i,j) ~= 0
o = o + 1;
end
end
end
c(~c) = nan;
r=max(max(c));
t=min(min(c));
clear
end
formatSpec1 = 'The number of hops from node %d to node %d is %d \n';
formatSpec2 = 'The average number of hops is %.4f, the maximum hop-count is %d, the minimum hop-count is %d \n';
formatSpec3 = 'The number of created paths is %d \n';
fileID = fopen('Paths11.txt','w');
fprintf(fileID,formatSpec1,i,j,c(i,j));
fprintf(fileID,formatSpec2,average_hop,r,t);
fprintf(fileID,formatSpec3,o);
clear;
X = X+average_hop;
Y = Y+r;
z = Z+t;
W = W+o;
end;
formatSpec1 = 'The number of hops from node %d to node %d is %d \n';
formatSpec2 = 'The average number of hops is %.4f, the average maximum hop-count is %.2f, the minimum hop-count is %d \n';
formatSpec3 = 'The average number of created paths is %.2f \n';
fileID = fopen('Energy-50-AODV.txt','w');
fprintf(fileID,formatSpec1,i,j,c(i,j));
fprintf(fileID,formatSpec2,X/a,Y/a,t);
fprintf(fileID,formatSpec3,W/a);
clear;
This is not a get-your-homework-done-for-free site; you'll have to do most of the work yourself. Here are my tips:
Don't leave your assignments to the last minute.
Study the MATLAB code of other people working in your field, and refer to the MATLAB help files (hit F1) when you get stuck. Here's a fruitful search query to point you in the right direction: wsn OR "sensor network" clustering matlab code site:edu
I have a matrix (with the size of A and B; suppose 100x100) and want to fill in with smaller matrix (or block) with the size of a and b (suppose 12x12).
As it is clear, the loop starts from "j" and then goes to the next row. Actually I want to use the same loop, by adding another variable to impose that it first complete the columns. Any idea that how I should define this new variable in the following loop to control the completion direction.
M = zeros(100,100);
for j = 1:12:100-12+1
for i = 1:12:100-12+1
block = rand(12,12);
M(i:i+11, j:j+11) = block;
imagesc(M); axis equal tight xy
pause(.1)
end;
end;
Why not just do
M = zeros(100,100);
for j = 1:12:100-12+1
for i = 1:12:100-12+1
block = rand(12,12);
M(i:i+11, j:j+11) = block;
imagesc(M); axis equal tight xy
pause(.1)
end;
end;
Now you will iterate over the i's first.
Incidentally, I recommend not using i and j as loop variables - they shadow the built in sqrt(-1) imaginary number...
update based on your comment, it seems you want to leave the order of i and j in the outer loop, and add "another parameter" to change the direction. The following code does all that. Is this what you are after?
M = zeros(100,100);
rowFirst = true; % set to false for "column first"
for i = 1:12:100-12+1
for j = 1:12:100-12+1
block = rand(12,12);
if rowFirst
M((0:11) + i, (0:11) + j) = block;
else
M((0:11) + j, (0:11) + i) = block;
end
imagesc(M); axis equal tight xy
pause(.1)
end
end
update 2 and now "even for non square matrix" (not tested, late at night):
M = zeros(100, 120);
rowFirst = true;
sz = size(M);
blockSize = 12;
v = 1:blockSize;
nrc = floor(sz / blockSize);
if rowFirst
nrc = reverse(nrc);
end
for ii = blockSize * (0:nrc(1)-1)
for jj = blockSize * (0:nrc(2)-1)
block = rand(blockSize*[1 1]);
if ~rowFirst
block = block';
end if
M(v + ii, v+jj) = block;
if rowFirst
imagesc(M);
else
imagesc(M');
end
axis equal tight xy
pause(0.1)
end
end
LAST TIME if you insist that the outer loop iterates over j and the inner loop over i, yet that in some instances j is the "faster moving" variable, you can do the following.
P = 120;
Q = 180;
M = zeros(P, Q); % not a square matrix
rowFirst = true; % a switch you can flip
blockSize = 15; % size of block
sz = floor(size(M)/blockSize); % number of iterations in j, i
nr = sz(1); nc = sz(2);
vv = 1:blockSize;
for jj = 0: (nc-1)
for ii = 0: (nr-1)
if(rowFirst)
kk = ii * blockSize;
ll = jj * blockSize;
else
nn = jj * nr + ii;
ll = mod(nn, nc);
kk = floor(nn / nc);
%ll = (nn - kk * nc);
fprintf(1, 'ii, jj, nn = [%d, %d, %d]: [kk, ll] = %d, %d\n', ii, jj, nn, kk, ll)
ll = ll * blockSize; kk = kk * blockSize;
% mod(nn, P);
end
M(kk+vv, ll+vv) = rand(blockSize*[1 1]);
imagesc(M);
axis tight equal xy;
pause(0.1);
end
end
I am Trying to convert a MATLAB code to C++ using MATLAB coder but this error apears:
Error indenting generated C code
The error points to the name of the function itself and has no more explanations in it. can someone tell me what is this error?
here is the function i want to conver:
function [Report_Clustered,ClusterCounter_new]=InitClusterGenerator_test(Report_In,~,FreqEpsilon,DegreeEpsilon,~,ClusterCounter_old, BlockCount, Report_old)
Report_M = zeros(size(Report_In,1),size(Report_In,2),4);
for i=1:size(Report_In,1)
for j=1:size(Report_In,2)
Report_M(i,j,1)=Report_In(i,j,1);
Report_M(i,j,2)=Report_In(i,j,2);
Report_M(i,j,3)=0; % Cluster number that the point belongs to.
Report_M(i,j,4)=0;
Report_In{i,j}
end
end
ClusterCounter = 0;
for i=1:size(Report_M,1)
for j=1:size(Report_M,2)
if (Report_M(i,j,3) == 0)
ClusterCounter = ClusterCounter + 1;
Report_M(i,j,3) = ClusterCounter;
for ii=1:size(Report_M,1)
for jj=1:size(Report_M,2)
if (Report_M(ii,jj,3) == 0)
if (abs(Report_M(i,j,1)-Report_M(ii,jj,1))<FreqEpsilon &&...
(abs(Report_M(i,j,2)-Report_M(ii,jj,2)) <DegreeEpsilon ||...
abs(-360 + Report_M(i,j,2)-Report_M(ii,jj,2)) <DegreeEpsilon ||...
abs(360 + Report_M(i,j,2)-Report_M(ii,jj,2)) <DegreeEpsilon))
Report_M(ii,jj,3) = ClusterCounter;
end
end
end
end
end
end
end
if (BlockCount> 20 && ClusterCounter<4)
warning = 1;
end
ClusterCounter_new = ClusterCounter;
%clear Report_new;
flag = 0;
Report_new = zeros(ClusterCounter,size (Report_M, 2),4);
index = zeros(1, ClusterCounter_new);
for i = 1: size (Report_M, 1)
for j = 1: size (Report_M, 2)
for k = 1: ClusterCounter_new
if (Report_M(i,j,3) == k)
index(1,k) = index(1,k) + 1;
Report_new(k,index(1,k), 1:3) = Report_M(i,j,1:3);
flag = flag + 1;
end
end
end
end
for j = 1: size (Report_new, 2)
for i = 1: size (Report_new, 1)
if (Report_new(i,j,1) == 0)
Report_new(i,j,1:3) = Report_new(i,1,1:3);
end
end
end
%Report_new = Report;
MedoidF_old = zeros(1, size(Report_old,1));
MedoidA_old = zeros(1, size(Report_old,1));
for i=1:size(Report_old,1)
SumF = 0;
SumA = 0;
MinAngle = 361;
MaxAngle = -1;
for j=1:size(Report_old,2)
SumF = SumF + Report_old(i,j,1);
SumA = SumA + Report_old(i,j,2);
if Report_old(i,j,2) > MaxAngle
MaxAngle = Report_old(i,j,2);
elseif Report_old(i,j,2) < MinAngle
MinAngle = Report_old(i,j,2);
end
end
MedoidF_old(1, i) = SumF/size(Report_old,2);
if (MaxAngle - MinAngle) > 350
MedoidA_old(1, i) = 0;
else
MedoidA_old(1, i) = SumA/size(Report_old,2);
end
end
MedoidF_new = zeros(1, size(Report_new,1));
MedoidA_new = zeros(1, size(Report_new,1));
for i=1:size(Report_new,1)
SumF = 0;
SumA = 0;
MinAngle = 361;
MaxAngle = -1;
for j=1:size(Report_new,2)
SumF = SumF + Report_new(i,j,1);
SumA = SumA + Report_new(i,j,2);
if Report_new(i,j,2) > MaxAngle
MaxAngle = Report_new(i,j,2);
elseif Report_new(i,j,2) < MinAngle
MinAngle = Report_new(i,j,2);
end
end
MedoidF_new(1, i) = SumF/size(Report_new,2);
if (MaxAngle - MinAngle) > 350
MedoidA_new(1, i) = 0;
else
MedoidA_new(1, i) = SumA/size(Report_new,2);
end
end
TempCluster = zeros(1, size(Report_new, 1));
CurrentCluster = ClusterCounter_old;
for i = 1: 1: size(Report_new,1)
for j = 1: 1: size(Report_old,1)
if (abs(MedoidF_old(1,j)-MedoidF_new(1,i))<FreqEpsilon &&...
(abs(MedoidA_old(1,j)-MedoidA_new(1,i))<DegreeEpsilon ||...
abs(360 + MedoidA_old(1,j)-MedoidA_new(1,i))<DegreeEpsilon ||...
abs(-360 + MedoidA_old(1,j)-MedoidA_new(1,i))<DegreeEpsilon)) %%if the new cluster is the rest of an old cluster use the old one's index for it
TempCluster(1,i) = Report_old(j,1,3);
end
end
%%this part is for seperating the clusters which where in the collision state in the past time
if (TempCluster(1,i)>0) %%if the new cluster is one of the old ones the index should be set
for j = 1:1:size(Report_new, 2)
Report_new(i,j,3) = TempCluster(1,i);
Report_new(i,j,4) = 1;% Alive
end
else %%first search if the new cluster is a part of a newly found cluster found before this one
for j = 1: 1: i-1
if (abs(MedoidF_new(1,j)-MedoidF_new(1,i))<FreqEpsilon &&...
(abs(MedoidA_new(1,j)-MedoidA_new(1,i))<DegreeEpsilon ||...
abs(360 + MedoidA_new(1,j)-MedoidA_new(1,i))<DegreeEpsilon ||...
abs(-360 + MedoidA_new(1,j)-MedoidA_new(1,i))<DegreeEpsilon)) %%if the new cluster is the rest of an old cluster use the old one's index for it
TempCluster(1,i) = Report_new(j,1,3);
end
end
end
if (TempCluster(1,i)>0) %%if the new cluster is one of the old ones the index should be set
for j = 1:1:size(Report_new, 2)
Report_new(i,j,3) = TempCluster(1,i);
Report_new(i,j,4) = 1;% Alive
end
else %%new cluster is just began so it needs a new index
CurrentCluster = CurrentCluster + 1;
ClusterCounter_new = CurrentCluster;
TempCluster(1,i) = CurrentCluster;
for j = 1:1:size(Report_new, 2)
Report_new(i,j,3) = TempCluster(1,i);
Report_new(i,j,4) = 1; % Alive
end
end
end
NewClusters = zeros(1, size (Report_new, 1));
for i = 1: size(Report_new, 1)
NewClusters (1,i) = Report_new(i,1,3);
end
OldClusters = zeros(1, size (Report_old, 1));
OldClustersLine = zeros(1, size (Report_old, 1));
for i = 1: size(Report_old, 1)
OldClusters (1,i) = Report_old(i,1,3);
OldClustersLine (1, i) = i;
end
NumberOfDead = 0;
%clear AddDead;
AddDead = zeros (16,size(Report_new, 2),4);
if (BlockCount>10)
for i = 1: size (OldClusters, 2)
IsDead = 1;
for j = 1: size (NewClusters, 2)
if OldClusters(1, i) == NewClusters(1,j)
IsDead = 0;
end
end
if (IsDead == 1)
NumberOfDead = NumberOfDead + 1;
%clear TempLine;
TempLine = zeros(1, size(Report_old,2), 4);
TempLine(1,:,1:3) = Report_old(OldClustersLine(1, i),:,1:3);
for k= 1: size(TempLine, 2)
TempLine(1,k,4) = 0; % Dead
end
TempSize = size(TempLine, 2);
Thresh = size(Report_new, 2);
if (TempSize >= Thresh)
AddDead (NumberOfDead, 1:Thresh, 1:4) = TempLine(1,1:Thresh, 1:4);
else
for l = 1: Thresh-TempSize
TempLine(1, TempSize+l, 1:4) = TempLine(1, TempSize, 1:4);
end
AddDead (NumberOfDead, 1:Thresh, 1:4) = TempLine(1,1:Thresh, 1:4);
end
end
end
xR = size (Report_new,1);
if (NumberOfDead == 0)
Report_Clustered = zeros (size(Report_new,1),size(Report_new,2),size(Report_new,3));
else
Report_Clustered = zeros (size(Report_new,1) + NumberOfDead,size(Report_new,2),size(Report_new,3));
end
Report_Clustered (1:size(Report_new,1), :, :) = Report_new(:,:,:);
for i = 1: NumberOfDead
Report_Clustered(xR + i, :) = AddDead(i, :);
end
end
and I'm using matlab 2012a
Tnx.
From what you've said in the comments, it appears that you simply need to call
clear functions
from the command line before recompiling the function to allow Matlab to overwrite the files. See this Matlab forum or the documentation for clear for more detail.