Filling data from PySpark to PostgreSQL via JDBC does not work - postgresql

I'm using a JDBC connector for the first time and trying to write a dataframe into a PostgreSQL database. I am strictly doing it according to:
How to use JDBC source to write and read data in (Py)Spark?
Driver is installed and code is specified:
postgres_url = "jdbc:postgresql://<IP_ADRESS>:<PORT>/postgres"
properties = {
"user": "user",
"password": "password",
"driver": "org.postgresql.Driver"
}
df.write.jdbc(url=postgres_url, table="newtable", mode = "overwrite", properties = properties)
After executing the code, I get this error:
py4j.protocol.Py4JJavaError: An error occurred while calling o110.jdbc.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 1.0 failed 4 times, most recent failure: Lost task 1.3 in stage 1.0 (TID 49, <SERVER>, executor 9): org.postgresql.util.PSQLException: The connection attempt failed.
at org.postgresql.core.v3.ConnectionFactoryImpl.openConnectionImpl(ConnectionFactoryImpl.java:331)
at org.postgresql.core.ConnectionFactory.openConnection(ConnectionFactory.java:49)
at org.postgresql.jdbc.PgConnection.<init>(PgConnection.java:223)
at org.postgresql.Driver.makeConnection(Driver.java:400)
at org.postgresql.Driver.connect(Driver.java:259)
at org.apache.spark.sql.execution.datasources.jdbc.DriverWrapper.connect(DriverWrapper.scala:45)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:63)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:54)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:610)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1405)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: connect timed out
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
at org.postgresql.core.PGStream.createSocket(PGStream.java:241)
at org.postgresql.core.PGStream.<init>(PGStream.java:98)
at org.postgresql.core.v3.ConnectionFactoryImpl.tryConnect(ConnectionFactoryImpl.java:109)
at org.postgresql.core.v3.ConnectionFactoryImpl.openConnectionImpl(ConnectionFactoryImpl.java:235)
... 22 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:935)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:933)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:933)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.saveTable(JdbcUtils.scala:834)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:82)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:45)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
at org.apache.spark.sql.DataFrameWriter.jdbc(DataFrameWriter.scala:515)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.postgresql.util.PSQLException: The connection attempt failed.
at org.postgresql.core.v3.ConnectionFactoryImpl.openConnectionImpl(ConnectionFactoryImpl.java:331)
at org.postgresql.core.ConnectionFactory.openConnection(ConnectionFactory.java:49)
at org.postgresql.jdbc.PgConnection.<init>(PgConnection.java:223)
at org.postgresql.Driver.makeConnection(Driver.java:400)
at org.postgresql.Driver.connect(Driver.java:259)
at org.apache.spark.sql.execution.datasources.jdbc.DriverWrapper.connect(DriverWrapper.scala:45)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:63)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:54)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:610)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:834)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1405)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.net.SocketTimeoutException: connect timed out
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
at org.postgresql.core.PGStream.createSocket(PGStream.java:241)
at org.postgresql.core.PGStream.<init>(PGStream.java:98)
at org.postgresql.core.v3.ConnectionFactoryImpl.tryConnect(ConnectionFactoryImpl.java:109)
at org.postgresql.core.v3.ConnectionFactoryImpl.openConnectionImpl(ConnectionFactoryImpl.java:235)
... 22 more
The weird thing is, when I look afterwards into the PostgreSQL, I can see the newly created table, but it is empty. So it seems that installing the connection and creating the structure DOES work, but filling in the data does not. I also tried "ssl" = "false" in the properties, but did not work either. Any suggestions would be greatly appreciated.
Best regards

The connection should be opened between your driver and Postgres AND between your workers and Postgres. Did you check that? The creation of the table is probably done on the driver's side. But then, your workers cannot connect to your DB, therefore, no data. Check that!
You probably have someone in your company who can help you with that. Either, some security/network guy. Otherwise, you need to connect on each driver and test the connectivity to your DB

Related

how to resolve "Py4JJavaError" error facing with pyspark

I tried to run show() method over data frame then after i started getting this error
Py4JJavaError: An error occurred while calling o152.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 7.0 failed 1 times, most recent failure: Lost task 0.0 in stage 7.0 (TID 10) (host.docker.internal executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:189)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:164)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:131)
at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:535)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:189)
at java.net.ServerSocket.implAccept(ServerSocket.java:545)
at java.net.ServerSocket.accept(ServerSocket.java:513)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:176)
... 29 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2672)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2608)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2607)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2607)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1182)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2860)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2791)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:952)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2228)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2249)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2268)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:506)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:459)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:48)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3868)
at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2863)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:3858)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:510)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3856)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3856)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2863)
at org.apache.spark.sql.Dataset.take(Dataset.scala:3084)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:288)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:327)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:750)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:189)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:164)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:329)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:131)
at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:535)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:189)
at java.net.ServerSocket.implAccept(ServerSocket.java:545)
at java.net.ServerSocket.accept(ServerSocket.java:513)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:176)
... 29 more
I have installed a updated version of pyspark then after I started getting error Py4JJavaError
can anyone help me with this error
normally what is root cause of this error
i tried to resolve it with few available references but didn't succeeded

java.net.SocketTimeoutException: connect timed out while loading dataframe to teradata using spark 2.2

I am trying to load dataframe in to teradata using JDBC driver, but getting below error.
jdbc version:- 16.10.00.07
cloudera version :- 5.15
invoking spark shell using below command.
spark2-shell --jars terajdbc4.jar,tdgssconfig.jar,teradata-connector-1.4.4.jar
we are able to get schema of the table but not able to select or insert operation for all the columns of the table.
also the code that i am using can be found below.
val insertdf = spark.sql(query)
val prop = new java.util.Properties
prop.setProperty("driver", "com.teradata.jdbc.TeraDriver")
prop.setProperty("user", "xxxxxx")
prop.setProperty("password", "*******")
val url = "jdbc:teradata://10.xxx.130.69/database=stg_database, TMODE=TERA"
val table = "test_table"
insertdf.write.mode("append").jdbc(url, table, prop)
ERROR:-
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2024)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2045)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2064)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2153)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2366)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:245)
at org.apache.spark.sql.Dataset.show(Dataset.scala:644)
at org.apache.spark.sql.Dataset.show(Dataset.scala:603)
at org.apache.spark.sql.Dataset.show(Dataset.scala:612)
... 48 elided
Caused by: java.sql.SQLException: [Teradata JDBC Driver] [TeraJDBC 16.10.00.07] [Error 1277] [SQLState 08S01] Login timeout for Connection to 10.130.130.69 Tue Feb 04 02:05:21 EST 2020 socket orig=10.130.130.69 cid=44c91563 sess=0 java.net.SocketTimeoutException: connect timed out at java.net.PlainSocketImpl.socketConnect(Native Method) at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350) at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206) at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188) at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392) at java.net.Socket.connect(Socket.java:589) at com.teradata.jdbc.jdbc_4.io.TDNetworkIOIF$ConnectThread.run(TDNetworkIOIF.java:1242)
at com.teradata.jdbc.jdbc_4.util.ErrorFactory.makeDriverJDBCException(ErrorFactory.java:95)
at com.teradata.jdbc.jdbc_4.util.ErrorFactory.makeDriverJDBCException(ErrorFactory.java:70)
at com.teradata.jdbc.jdbc_4.util.ErrorFactory.makeIoJDBCException(ErrorFactory.java:208)
at com.teradata.jdbc.jdbc_4.util.ErrorAnalyzer.analyzeIoError(ErrorAnalyzer.java:59)
at com.teradata.jdbc.jdbc_4.io.TDNetworkIOIF.createSocketConnection(TDNetworkIOIF.java:163)
at com.teradata.jdbc.jdbc_4.io.TDNetworkIOIF.<init>(TDNetworkIOIF.java:142)
at com.teradata.jdbc.jdbc.GenericTeradataConnection.getIO(GenericTeradataConnection.java:142)
at com.teradata.jdbc.jdbc.GenericLogonController.run(GenericLogonController.java:100)
at com.teradata.jdbc.jdbc_4.TDSession.<init>(TDSession.java:211)
at com.teradata.jdbc.jdk6.JDK6_SQL_Connection.<init>(JDK6_SQL_Connection.java:36)
at com.teradata.jdbc.jdk6.JDK6ConnectionFactory.constructSQLConnection(JDK6ConnectionFactory.java:25)
at com.teradata.jdbc.jdbc.ConnectionFactory.createConnection(ConnectionFactory.java:178)
at com.teradata.jdbc.jdbc.ConnectionFactory.createConnection(ConnectionFactory.java:168)
at com.teradata.jdbc.TeraDriver.doConnect(TeraDriver.java:236)
at com.teradata.jdbc.TeraDriver.connect(TeraDriver.java:162)
at org.apache.spark.sql.execution.datasources.jdbc.DriverWrapper.connect(DriverWrapper.scala:45)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:61)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:52)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:286)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: connect timed out
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
These are the important parts of the stack trace from the Teradata JDBC Driver:
[Error 1277] [SQLState 08S01] Login timeout for Connection to 10.130.130.69
...
Caused by: java.net.SocketTimeoutException: connect timed out
This error means that the Teradata JDBC Driver was unable to connect to a database at the IP address 10.130.130.69.
Either that is the wrong IP address, or the database is not running (it is down), or the system that you are running your program on doesn't have connectivity to that IP address (prevented by firewall).

Pyspark csv write fails with coalesce(1), but runs with repartition(1)

I am trying to write a spark DF to a single csv file. Normally, I use this call which works:
df.coalesce(1).write.mode("overwrite").csv(file_path, sep=",", header=True)
BUT I have run into an instance where this errors out and I get the message "the file already exists". From the digging I've done this is a pyspark retry and the actual failure is in the logs. However, looking in the container logs I don't see anything that points to a reason for the failure. I have resolved this issue, but I am looking for an explanation of why this solves the problem. Running this command:
df.repartition(1).write.mode("overwrite").csv(file_path, sep=",", header=True)
will successfully save a single csv file to the specified path.
I have looked at difference between coalesce and repartition (it has to do with adding to existing partitions vs a full shuffle), but I don't understand how this solves the above issue.
EDIT, adding the full error message:
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:196)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:276)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:270)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:228)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:656)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 148.0 failed 4 times, most recent failure: Lost task 0.3 in stage 148.0 (TID 10599, ip-172-31-42-50.ec2.internal, executor 140): org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>/part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2039)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2027)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2026)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2026)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2260)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2209)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2198)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:166)
... 33 more
Caused by: org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>/part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Traceback (most recent call last):
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 929, in csv
self._jwrite.csv(path)
File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o815.csv.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:196)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:668)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:276)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:270)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:228)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:656)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 148.0 failed 4 times, most recent failure: Lost task 0.3 in stage 148.0 (TID 10599, ip-172-31-42-50.ec2.internal, executor 140): org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2039)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2027)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2026)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2026)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2260)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2209)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2198)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:166)
... 33 more
Caused by: org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<PATH>/part-00000-a7dc7464-838c-4fd6-962c-899bb58548dc-c000.csv
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:810)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:212)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStream(CodecStreams.scala:81)
at org.apache.spark.sql.execution.datasources.CodecStreams$.createOutputStreamWriter(CodecStreams.scala:92)
at org.apache.spark.sql.execution.datasources.csv.CsvOutputWriter.<init>(CSVFileFormat.scala:177)
at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anon$1.newInstance(CSVFileFormat.scala:85)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:233)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:168)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more```

Spark: java.lang.NullPointerException only in cluster mode (in local mode works well!)

I was running some tests in my local machine and everything was well.
Now, I'm running in a cluster with the same jar file, dataset, etc, and I'm getting the following exception:
java.lang.NullPointerException
at learner.MyLearner$$anonfun$18.apply(MyLearner.scala:165)
at learner.MyLearner$$anonfun$18.apply(MyLearner.scala:165)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2087)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at learner.MyLearner$.learn(MyLearner.scala:168)
at learner.Learner.learnAndClassify(Learner.scala:123)
at learner.Learner.run(Learner.scala:27)
at Launcher$.main(Launcher.scala:56)
at Launcher.main(Launcher.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NullPointerException
at learner.MyLearner$$anonfun$18.apply(MyLearner.scala:165)
at learner.MyLearner$$anonfun$18.apply(MyLearner.scala:165)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
In MyLearner.scala, line 165 is this:
val rdd2: RDD[Rule] = rdd1.map { case (id, _) => new Rule(brdcst.value.elements(id).features, 0L, 0, id.toString, variables, labels, classes) }
I don't understand the exception and what could be the reason if in local mode this works well. Sorry if this is a obvious question, I have tried to figured it out but I coudn't.
I have tried to create a single rule, in order to check the new Rule(...) part, and I've put it in an RDD and it worked!
Info: The Rule class extends of the Serializable one.
Also, I did the following only to check the access to the broadcast variable, and it also works:
rdd1.collect().foreach{case (id, _) => println(brdcst.value.elements(id).features)}
Any suggestions or ideas?

Sparkling water local mode cluster error

I'm trying to extend the hamorspam example(https://github.com/h2oai/sparkling-water/blob/master/examples/scripts/hamOrSpam.script.scala
) to make parallel predictions for large dataset using spark's parallel computation power(during the inference stage, not the training phase).
Below is the code I have written for the same. Moreover, it perfectly works fine in single node localmode (for export MASTER="local[*] ``), but fails when I run with export MASTER="local-cluster[2,2,1024] when 2 worker nodes are spawn.(to check the prediction parallelisation)
val data_test = load("smsData.txt") // Should be a large(in GBs) test dataset - using same training data for testing purposes just to test the workflow
val message_test = data.map( r => r(1))
message.take(1000).map(x => isSpam(x, dlModel, hashingTF, idfModel, h2oContext))
So the code fails when executing scala> val table:H2OFrame = resultRDD (
https://github.com/h2oai/sparkling-water/blob/master/examples/scripts/hamOrSpam.script.scala#L110)
I have attached the error from the console below:
17/06/26 20:25:49 WARN TaskSetManager: Lost task 0.0 in stage 6.0 (TID 43, 144.27.27.98, executor 1): java.lang.NoClassDefFoundError: Could not ini
tialize class $line32.$read$
at $line41.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:57)
at $line41.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:57)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1010)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1009)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
17/06/26 20:25:49 ERROR TaskSetManager: Task 0 in stage 6.0 failed 4 times; aborting job
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 6.0 failed 4 times, most recent failure: Lost task 0.3 in stage
6.0 (TID 49, 144.27.27.98, executor 0): java.lang.NoClassDefFoundError: Could not initialize class
at $anonfun$1.apply(<console>:57)
at $anonfun$1.apply(<console>:57)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1010)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1009)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1981)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1025)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007)
at org.apache.spark.h2o.utils.H2OSchemaUtils$.collectMaxArrays(H2OSchemaUtils.scala:229)
at org.apache.spark.h2o.utils.H2OSchemaUtils$.expandedSchema(H2OSchemaUtils.scala:107)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$.toH2OFrame(SparkDataFrameConverter.scala:59)
at org.apache.spark.h2o.H2OContext.asH2OFrame(H2OContext.scala:167)
at org.apache.spark.h2o.H2OContextImplicits.asH2OFrameFromDataFrame(H2OContextImplicits.scala:54)
... 58 elided
Caused by: java.lang.NoClassDefFoundError: Could not initialize class
at $anonfun$1.apply(<console>:57)
at $anonfun$1.apply(<console>:57)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1010)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1009)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Any ideas?. Thanks in advance.