How to get maxspeed from overpass for multilevel intersections/roads? - openstreetmap

How can I get speed limit for multilevel intersections/roads? When I go over the bridge or under the bridge, I can get wrong speed limit.
I am using: way[maxspeed](around:20, <latitude>, <longitude>), but I cannot specific altitude.
I am using Overpass API by OpenStreetMaps.

Unfortunately, your current approach of considering speed limits of any road within a certain radius around your location is likely to struggle not just at multilevel intersections, but also with parallel roads and at regular intersections involving ways with different speed limits. It assumes that you know your location with an accuracy that you won't have available in many use cases, and fails in 3 dimensions because OpenStreetMap data does not contain altitude information, only a vertical ordering (i.e. whether an object is above or below another).
It seems to me that the problem you need to solve is finding out which road you're actually on. Once you know the road, you can easily access any of its attributes, including those relevant to speed limits.
This problem of finding the corresponding road for a location, and preferably a history of past locations, is called map matching. For OpenStreetMap data, I believe GraphHopper offers a map matching implementation and API.

Related

Calculate route using only specified routes with HERE

I want to calculate a route from A to B using only a subset of the routes available in a city, as long as it is possible (if A or B is not on the subset of roads I still need to calculate the route). I tried to use avoidareas but it's quite difficult to define rectangles to avoid outside of the roads (and I saw somewhere the number of boxes is limited).
Can you please explain what do you mean by "subset of the routes". Do you mean to avoid a particular kind of road?
if you want to always include a certain road(s) you can always use waypoints to direct the route through those roads. Generally, Routing algorithms are designed to "avoid" not "prefer" an area.
Various examples on how to avoid a rectangle(s) is explained here- https://developer.here.com/documentation/routing/topics/example-route-avoiding-an-area.html
How to use a waypoint is explained here - https://developer.here.com/documentation/routing/topics/resource-param-type-waypoint.html
How to avoid a certain road type is explained here - https://developer.here.com/documentation/routing/topics/avoiding-certain-road-types.html

Clarification on OVERPASS_MAX_QUERY_AREA_SIZE default (OSMnx, Overpass API)

I am using OSMnx to query the Overpass API. I've noticed that it has a fairly large default for minimum area size:
OVERPASS_MAX_QUERY_AREA_SIZE = 50*1000*50*1000
This value is used to subdivide "larger" polygons into chunks to submit to the Overpass API.
I'd like to understand why the area is so large. For example, the entirety of San Francisco (~50 sq miles) is "simplified" to a single query.
Key questions:
Is there any advantage to reducing query sizes submitted to the Overpass API?*
Is there any advantage to reducing the complexity of shapes/polygons being submitted to the Overpass API (that is, using rectangles with just 4 corner coordinates), versus more complex polygons?**
*Note: Example query that I would be running (looking for the ways that would constitute a walk network):
[out:json][timeout:180];(way["highway"]["area"!~"yes"]["highway"!~"cycleway|motor|proposed|construction|abandoned|platform|raceway"]["foot"!~"no"]["service"!~"private"]["access"!~"private"](37.778007,-122.445467,37.783454,-122.438958);>;);out;
**Note: This question is partially answered in this other post. That said, that question does not focus completely on the performance implications, and is not asked in the context of the variable area threshold used in OSMnx to subdivide "larger" geometries.
max_query_area_size appears to be some heuristic value someone came up after doing a number of test runs. From Overpass API side this figure has pretty much no meaning on its own.
It may be completely off for different kinds of queries or even in a different area than SF. As an example: for infrequent tags, it's usually better to go ahead with a rather large bounding box, rather than firing off a huge number of queries with tiny bounding boxes.
For some statement types, a large bounding box may cause significant longer processing time, though. In this case splitting up the area in smaller pieces may help. Some queries might even consume too much memory, which forces you to split your bounding box in smaller pieces.
As you didn't mention the kind of query you want to run, it's very difficult to provide some general advise. It's like asking for a best way to write SQL statements without providing any additional context.
Using bounding boxes instead of (poly:...) has performance advantages. If you can specify a bounding box, use the respective bounding box filter rather than providing 4 lat/lon pairs to the poly filter.

Find points near LineString in mongodb sorted by distance

I have an array of points representing a street (black line) and points, representing a places on map (red points). I want to find all the points near the specified street, sorted by distance. I also need to have the ability to specify max distance (blue and green areas). Here is a simple example:
I thought of using the $near operator but it only accepts Point as an input, not LineString.
How mongodb can handle this type of queries?
As you mentioned, Mongo currently doesn't support anything other than Point. Have you come across the concept of a route boxer? 1 It was very popular a few years back on Google Maps. Given the line that you've drawn, find stops that are within dist(x). It was done by creating a series of bounding boxes around each point in the line, and searching for points that fall within the bucket.
I stumbled upon your question after I just realised that Mongo only works with points, which is reasonable I assume.
I already have a few options of how to do it (they expand on what #mnemosyn says in the comment). With the dataset that I'm working on, it's all on the client-side, so I could use the routeboxer, but I would like to implement it server-side for performance reasons. Here are my suggestions:
break the LineString down into its individual coordinate sets, and query for $near using each of those, combine results and extract an unique set. There are algorithms out there for simplifying a complex line, by reducing the number of points, but a simple one is easy to write.
do the same as above, but as a stored procedure/function. I haven't played around with Mongo's stored functions, and I don't know how well they work with drivers, but this could be faster than the first option above as you won't have to do roundtrips, and depending on the machine that your instance(s) of Mongo is(are) hosted, calculations could be faster by microseconds.
Implement the routeboxer approach server-side (has been done in PHP), and then use either of the above 2 to find stops that are $within the resulting bounding boxes. Heck since the routeboxer method returns rectangles, it would be possible to merge all these rectangles into one polygon covering your route, and just do a $within on that. (What #mnemosyn suggested).
EDIT: I thought of this but forgot about it, but it might be possible to achieve some of the above using the aggregation framework.
It's something that I'm going to be working on soon (hopefully), I'll open-source my result(s) based on which I end up going with.
EDIT: I must mention though that 1 and 2 have the flaw that if you have 2 points in a line that are say 2km apart, and you want points that are within 1.8km of your line, you'll obviously miss all the points between that part of your line. The solution is to inject points onto your line when simplifying it (I know, beats the objective of reducing points when adding new ones back in).
The flaw with 3 then is that it won't always be accurate as some points within your polygon are likely to have a distance greater than your limit, though the difference wouldn't be a significant percentage of your limit.
[1] google maps utils routeboxer
As you said Mongo's $near only works on points not lines as the centre point however if you flip your premise from find points near the line to find the line near the point then you can use your points as the centre and line as the target
this is the difference between
foreach line find points near it
and
foreach point find line near it
if you have a large number of points to check you can combine this with nevi_me's answer to reduce the list of points that need checking to a much smaller subset

Calculation route length

I have a map with about 80 annotations. I would like to do 3 things.
1) From my current location, I would like to know the actual route distance to that position. Not the linear distance.
2) I want to be able to show a list of all the annotations, but for every annotation (having lon/lat) I would like to know the actual route distance from my position to that position.
3) I would like to know the closest annotation to my possition using route distance. Not linear distance.
I think the answer to all these three points will be the same. But please keep in mind that I don't want to create a route, I just want to know the distance to the annotation.
I hope someone can help me.
Best regards,
Paul Peelen
From what I understand of your post, I believe you seek the Haversine formula. Luckily for you, there are a number of Objective-C implementations, though writing your own is trivial once the formula's in front of you.
I originally deleted this because I didn't notice that you didn't want linear distance at first, but I'm bringing it back in case you decide that an approximation is good enough at that particular point of the user interaction.
I think as pointed out before, your query would be extremely heavy for google maps API if you perform exactly what you are saying. Do you need all that information at once ? Maybe first it would be good enough to query just some of the distances based on some heuristic or in the user needs.
To obtain the distances, you could use a Google Maps GDirections object... as pointed out here ( at the bottom of the page there's "Routes and Steps" section, with an advanced example.
"The GDirections object also supports multi-point directions, which can be constructed using the GDirections.loadFromWaypoints() method. This method takes an array of textual input addresses or textual lat/lon points. Each separate waypoint is computed as a separate route and returned in a separate GRoute object, each of which contains a series of GStep objects."
Using the Google Maps API in the iPhone shouldn't be too difficult, and I think your question doesn't cover that, but if you need some basic example, you could look at this question, and scroll to the answer.
Good Luck!
Calculating route distance to about 80 locations is certain to be computationally intensive on Google's part and I can't imagine that you would be able to make those requests to the Google Maps API, were it possible to do so on a mobile device, without being severely limited by either the phone connection or rate limits on the server.
Unfortunately, calculating route distance rather than geometric distance is a very expensive computation involving a lot of data about the area - data you almost certainly don't have. This means, unfortunately, that this isn't something that Core Location or MapKit can help you with.
What problem are you trying to solve, exactly? There may be other heuristics other than route distance you can use to approximate some sort of distance ranking.

Dijkstra algorithm for iPhone

It is possible to easily use the GPS functionality in the iPhone since sdk 3.0, but it is explicitly forbidden to use Google's Maps.
This has two implications, I think:
You will have to provide maps yourself
You will have to calculate the shortest routes yourself.
I know that calculating the shortest route has puzzled mathematicians for ages, but both Tom Tom and Google are doing a great job, so that issue seems to have been solved.
Searching on the 'net, not being a mathematician myself, I came across the Dijkstra Algorithm. Is there anyone of you who has successfully used this algorithm in a Maps-like app in the iPhone?
Would you be willing to share it with me/the community?
Would this be the right approach, or are the other options?
Thank you so much for your consideration.
I do not believe Dijkstra's algorithm would be useful for real-world mapping because, as Tom Leys said (I would comment on his post, but lack the rep to do so), it requires a single starting point. If the starting point changes, everything must be recalculated, and I would imagine this would be quite slow on a device like the iPhone for a significantly large data set.
Dijkstra's algorithm is for finding the shortest path to all nodes (from a single starting node). Game programmers use a directed search such as A*. Where Dijkstra processes the node that is closest to the starting position first, A* processes the one that is estimated to be nearest to the end position
The way this works is that you provide a cheap "estimate" function from any given position to the end point. A good example is how far a bird would fly to get there. A* adds this to the current distance from the start for each node and then chooses the node that seems to be on the shortest path.
The better your estimate, the shorter the time it will take to find a good path. If this time is still too long, you can do a path find on a simple map and then another on a more complex map to find the route between the places you found on the simple map.
Update
After much searching, I have found an article on A* for you to to read
Dijkstra's algorithm is O(m log n) for n nodes and m edges (for a single path) and is efficient enough to be used for network routing. This means that it's efficient enough to be used for a one-off computation.
Briefly, Dijkstra's algorithm works like:
Take the start node
Assign it a depth of zero
Insert it into a priority queue at its depth key
Repeat:
Pop the node with the lowest depth from the priority queue
Record the node that you came from so you can track the path back
Mark the node as having been visited
If this node is the destination:
Break
For each neighbour:
If the node has not previously been visited:
Calculate depth as depth of current node + distance to neighbour
Insert neighbour into the priority queue at the calculated depth.
Return the destination node and list of the nodes through which it was reached.
Contrary to popular belief, Dijkstra's algorithm is not necessarily an all-pairs shortest path calculator, although it can be adapted to do this.
You would have to get a graph of the streets and intersections with the distances between the intersections. If you had this data you could use Dijkstra's algorithm to compute a shortest route.
If you look at technology tomtom calls 'IQ routes', they measure actual speed and travel time per roadstretch per time of day. This makes the arrival time more accurate. So the expected arrival time is more fact-based http://www.tomtom.com/page/iq-routes
Calculating a route using the A* algorithm is plenty fast enough on an iPhone with offline map data. I have experience of doing this commercially. I use the A* algorithm as documented on Wikipedia, and I keep the road network in memory and re-use it; once it's loaded, routing even over a large area like Spain or the western half of Canada is practically instant.
I take data from OpenStreetMap or elswhere and convert it into a directed graph, assuming (which is the right way to do it according to those who know) that any two roads sharing a point with the same ID are joined. I assign weights to different types of roads based on expected speeds, and if a portion of a road is one-way I create only a single arc; two-way roads get two arcs, one in each direction. That's pretty much the whole thing apart from some ad-hoc code to prevent dangerous turns, and implementing routing restrictions.
This was discussed earlier here: What algorithms compute directions from point a to point b on a map?
Have a look at CloudMade. They offer a free service for iPhone and iPad that allows navigation based on your current location. It is built on open street maps and has some nifty features like making your own mapstyle. It is a little slow from time to time but its totally free.