So I am attempting to grab the types of each field in a Scala object class:
package myapp.model
object MyObject {
val theInt: Option[Int]
}
Using the ReflectionHelper so graciously provided by Brian in this post. I use getFieldType but it returns Option[Object] instead of what it is, which is Option[Int]. The example code in that answer works for a case class, for example:
package myapp.model
case class Person(
name: String,
age: Option[Int]
)
scala> ReflectionHelper.getFieldType("myapp.model.Person", "age") // int
res12: Option[reflect.runtime.universe.Type] = Some(Option[Int])
However, if I run getFieldType on a Scala object field, we get this:
scala> ReflectionHelper.getFieldType("myapp.model.MyObject$", "theInt")
res10: Option[reflect.runtime.universe.Type] = Some(Option[Object])
What is different about Scala objects that causes this behavior and how can I get getFieldType to return Option[Int] instead of Option[Object] like it does for the case class?
Here is the ReflectionHelper from the other question for convenience:
import scala.reflect.runtime.{ universe => u }
import scala.reflect.runtime.universe._
object ReflectionHelper {
val classLoader = Thread.currentThread().getContextClassLoader
val mirror = u.runtimeMirror(classLoader)
def getFieldType(className: String, fieldName: String): Option[Type] = {
val classSymbol = mirror.staticClass(className)
for {
fieldSymbol <- classSymbol.selfType.members.collectFirst({
case s: Symbol if s.isPublic && s.name.decodedName.toString() == fieldName => s
})
} yield {
fieldSymbol.info.resultType
}
}
def maybeUnwrapFieldType[A](fieldType: Type)(implicit tag: TypeTag[A]): Option[Type] = {
if (fieldType.typeConstructor == tag.tpe.typeConstructor) {
fieldType.typeArgs.headOption
} else {
Option(fieldType)
}
}
def getFieldClass(className: String, fieldName: String): java.lang.Class[_] = {
// case normal field return its class
// case Option field return generic type of Option
val result = for {
fieldType <- getFieldType(className, fieldName)
unwrappedFieldType <- maybeUnwrapFieldType[Option[_]](fieldType)
} yield {
mirror.runtimeClass(unwrappedFieldType)
}
// Consider changing return type to: Option[Class[_]]
result.getOrElse(null)
}
}
Try
import scala.reflect.runtime.universe._
import scala.reflect.runtime
val runtimeMirror = runtime.currentMirror
runtimeMirror.staticClass("myapp.model.Person").typeSignature
.member(TermName("age")).typeSignature // => Option[Int]
runtimeMirror.staticModule("myapp.model.MyObject").typeSignature
.member(TermName("theInt")).typeSignature // => Option[Int]
More specifically, I have:
case class Key (key: String)
abstract class abstr {
type MethodMap = PartialFunction[Key, String => Unit]
def myMap: MethodMap // abstract
def useIt (key: Key, value: String) = {
val meth = myMap(key)
meth(value)
}
def report = {
for (key <- myMap.keySet) // how to do this
println("I support "+key)
}
}
I use it like this:
class concrete extends abstr {
var one: Boolean
def method1(v: String): Unit = ???
def method2(v: String): Unit = ???
def map1: MethodMap = {
case Key("AAA") => method1
}
def map2: MethodMap = {
case Key("AAA") => method2
}
override def myMap: MethodMap = if (one) map1 else map2
}
Of course, this is somewhat simplified, but the report function is necessary.
Some history: I first had it implemented using Map but then I changed it to PartialFunction in order to support the following override def myMap: MethodMap = if (one) map1 else map2.
Any suggestion to refactor my code to support everything is also appreciated.
No. PartialFunction can be defined (and often is) on infinite sets. E.g. what do you expect report to return in these situations:
class concrete2 extends abstr {
def myMap = { case Key(_) => ??? }
}
or
class concrete2 extends abstr {
def myMap = { case Key(key) if key.length > 3 => ??? }
}
? If you have a finite list of values you are interested in, you can do
abstract class abstr {
type MethodMap = PartialFunction[Key, String => Unit]
def myMap: MethodMap // abstract
val keys: Seq[Key] = ...
def report = {
for (key <- keys if myMap.isDefined(key))
println("I support "+key)
}
}
Some history: I first had it implemented using Map but then I changed it to PartialFunction in order to support the last line in second part.
Why? This would work just as well with Map.
In your solution, is there any way to define the domain of the partial function to be the finite set keys
def f: MethodMap = { case key if keys.contains(key) => ... }
Of course, the domain isn't part of the type.
Can't I use a generic on the unapply method of an extractor along with an implicit "converter" to support a pattern match specific to the parameterised type?
I'd like to do this (Note the use of [T] on the unapply line),
trait StringDecoder[A] {
def fromString(string: String): Option[A]
}
object ExampleExtractor {
def unapply[T](a: String)(implicit evidence: StringDecoder[T]): Option[T] = {
evidence.fromString(a)
}
}
object Example extends App {
implicit val stringDecoder = new StringDecoder[String] {
def fromString(string: String): Option[String] = Some(string)
}
implicit val intDecoder = new StringDecoder[Int] {
def fromString(string: String): Option[Int] = Some(string.charAt(0).toInt)
}
val result = "hello" match {
case ExampleExtractor[String](x) => x // <- type hint barfs
}
println(result)
}
But I get the following compilation error
Error: (25, 10) not found: type ExampleExtractor
case ExampleExtractor[String] (x) => x
^
It works fine if I have only one implicit val in scope and drop the type hint (see below), but that defeats the object.
object Example extends App {
implicit val intDecoder = new StringDecoder[Int] {
def fromString(string: String): Option[Int] = Some(string.charAt(0).toInt)
}
val result = "hello" match {
case ExampleExtractor(x) => x
}
println(result)
}
A variant of your typed string decoder looks promising:
trait StringDecoder[A] {
def fromString(s: String): Option[A]
}
class ExampleExtractor[T](ev: StringDecoder[T]) {
def unapply(s: String) = ev.fromString(s)
}
object ExampleExtractor {
def apply[A](implicit ev: StringDecoder[A]) = new ExampleExtractor(ev)
}
then
implicit val intDecoder = new StringDecoder[Int] {
def fromString(s: String) = scala.util.Try {
Integer.parseInt(s)
}.toOption
}
val asInt = ExampleExtractor[Int]
val asInt(Nb) = "1111"
seems to produce what you're asking for. One problem remains: it seems that trying to
val ExampleExtractor[Int](nB) = "1111"
results in a compiler crash (at least inside my 2.10.3 SBT Scala console).
Let's say I have this example case class
case class Test(key1: Int, key2: String, key3: String)
And I have a map
myMap = Map("k1" -> 1, "k2" -> "val2", "k3" -> "val3")
I need to convert this map to my case class in several places of the code, something like this:
myMap.asInstanceOf[Test]
What would be the easiest way of doing that? Can I somehow use implicit for this?
Two ways of doing this elegantly. The first is to use an unapply, the second to use an implicit class (2.10+) with a type class to do the conversion for you.
1) The unapply is the simplest and most straight forward way to write such a conversion. It does not do any "magic" and can readily be found if using an IDE. Do note, doing this sort of thing can clutter your companion object and cause your code to sprout dependencies in places you might not want:
object MyClass{
def unapply(values: Map[String,String]) = try{
Some(MyClass(values("key").toInteger, values("next").toFloat))
} catch{
case NonFatal(ex) => None
}
}
Which could be used like this:
val MyClass(myInstance) = myMap
be careful, as it would throw an exception if not matched completely.
2) Doing an implicit class with a type class creates more boilerplate for you but also allows a lot of room to expand the same pattern to apply to other case classes:
implicit class Map2Class(values: Map[String,String]){
def convert[A](implicit mapper: MapConvert[A]) = mapper conv (values)
}
trait MapConvert[A]{
def conv(values: Map[String,String]): A
}
and as an example you'd do something like this:
object MyObject{
implicit val new MapConvert[MyObject]{
def conv(values: Map[String, String]) = MyObject(values("key").toInt, values("foo").toFloat)
}
}
which could then be used just as you had described above:
val myInstance = myMap.convert[MyObject]
throwing an exception if no conversion could be made. Using this pattern converting between a Map[String, String] to any object would require just another implicit (and that implicit to be in scope.)
Here is an alternative non-boilerplate method that uses Scala reflection (Scala 2.10 and above) and doesn't require a separately compiled module:
import org.specs2.mutable.Specification
import scala.reflect._
import scala.reflect.runtime.universe._
case class Test(t: String, ot: Option[String])
package object ccFromMap {
def fromMap[T: TypeTag: ClassTag](m: Map[String,_]) = {
val rm = runtimeMirror(classTag[T].runtimeClass.getClassLoader)
val classTest = typeOf[T].typeSymbol.asClass
val classMirror = rm.reflectClass(classTest)
val constructor = typeOf[T].decl(termNames.CONSTRUCTOR).asMethod
val constructorMirror = classMirror.reflectConstructor(constructor)
val constructorArgs = constructor.paramLists.flatten.map( (param: Symbol) => {
val paramName = param.name.toString
if(param.typeSignature <:< typeOf[Option[Any]])
m.get(paramName)
else
m.get(paramName).getOrElse(throw new IllegalArgumentException("Map is missing required parameter named " + paramName))
})
constructorMirror(constructorArgs:_*).asInstanceOf[T]
}
}
class CaseClassFromMapSpec extends Specification {
"case class" should {
"be constructable from a Map" in {
import ccFromMap._
fromMap[Test](Map("t" -> "test", "ot" -> "test2")) === Test("test", Some("test2"))
fromMap[Test](Map("t" -> "test")) === Test("test", None)
}
}
}
Jonathan Chow implements a Scala macro (designed for Scala 2.11) that generalizes this behavior and eliminates the boilerplate.
http://blog.echo.sh/post/65955606729/exploring-scala-macros-map-to-case-class-conversion
import scala.reflect.macros.Context
trait Mappable[T] {
def toMap(t: T): Map[String, Any]
def fromMap(map: Map[String, Any]): T
}
object Mappable {
implicit def materializeMappable[T]: Mappable[T] = macro materializeMappableImpl[T]
def materializeMappableImpl[T: c.WeakTypeTag](c: Context): c.Expr[Mappable[T]] = {
import c.universe._
val tpe = weakTypeOf[T]
val companion = tpe.typeSymbol.companionSymbol
val fields = tpe.declarations.collectFirst {
case m: MethodSymbol if m.isPrimaryConstructor ⇒ m
}.get.paramss.head
val (toMapParams, fromMapParams) = fields.map { field ⇒
val name = field.name
val decoded = name.decoded
val returnType = tpe.declaration(name).typeSignature
(q"$decoded → t.$name", q"map($decoded).asInstanceOf[$returnType]")
}.unzip
c.Expr[Mappable[T]] { q"""
new Mappable[$tpe] {
def toMap(t: $tpe): Map[String, Any] = Map(..$toMapParams)
def fromMap(map: Map[String, Any]): $tpe = $companion(..$fromMapParams)
}
""" }
}
}
This works well for me,if you use jackson for scala:
def from[T](map: Map[String, Any])(implicit m: Manifest[T]): T = {
val mapper = new ObjectMapper() with ScalaObjectMapper
mapper.convertValue(map)
}
Reference from:Convert a Map<String, String> to a POJO
I don't love this code, but I suppose this is possible if you can get the map values into a tuple and then use the tupled constructor for your case class. That would look something like this:
val myMap = Map("k1" -> 1, "k2" -> "val2", "k3" -> "val3")
val params = Some(myMap.map(_._2).toList).flatMap{
case List(a:Int,b:String,c:String) => Some((a,b,c))
case other => None
}
val myCaseClass = params.map(Test.tupled(_))
println(myCaseClass)
You have to be careful to make sure the list of values is exactly 3 elements and that they are the correct types. If not, you end up with a None instead. Like I said, not great, but it shows that it is possible.
commons.mapper.Mappers.mapToBean[CaseClassBean](map)
Details: https://github.com/hank-whu/common4s
Here's an update to Jonathon's answer for Scala 3 (which no longer has TypeTag). Be aware that this won't work for case classes nested inside of other classes. But for top-level case classes it seems to work fine.
import scala.reflect.ClassTag
object Reflect:
def fromMap[T <: Product : ClassTag](m: Map[String, ?]): T =
val classTag = implicitly[ClassTag[T]]
val constructor = classTag.runtimeClass.getDeclaredConstructors.head
val constructorArgs = constructor.getParameters()
.map { param =>
val paramName = param.getName
if (param.getType == classOf[Option[_]])
m.get(paramName)
else
m.get(paramName)
.getOrElse(throw new IllegalArgumentException(s"Missing required parameter: $paramName"))
}
constructor.newInstance(constructorArgs: _*).asInstanceOf[T]
And a test for the above:
case class Foo(a: String, b: Int, c: Option[String] = None)
case class Bar(a: String, b: Int, c: Option[Foo])
class ReflectSuite extends munit.FunSuite:
test("fromMap") {
val m = Map("a" -> "hello", "b" -> 42, "c" -> "world")
val foo = Reflect.fromMap[Foo](m)
assertEquals(foo, Foo("hello", 42, Some("world")))
val n = Map("a" -> "hello", "b" -> 43)
val foo2 = Reflect.fromMap[Foo](n)
assertEquals(foo2, Foo("hello", 43))
val o = Map("a" -> "yo", "b" -> 44, "c" -> foo)
val bar = Reflect.fromMap[Bar](o)
assertEquals(bar, Bar("yo", 44, Some(foo)))
}
test("fromMap should fail when required parameter is missing") {
val m = Map("a" -> "hello", "c" -> "world")
intercept[java.lang.IllegalArgumentException] {
Reflect.fromMap[Foo](m)
}
}
I add variables with Dynamic from scala 2.10.0-RC1 like this:
import language.dynamics
import scala.collection.mutable.HashMap
object Main extends Dynamic {
private val map = new HashMap[String, Any]
def selectDynamic(name: String): Any = {return map(name)}
def updateDynamic(name:String)(value: Any) = {map(name) = value}
}
val fig = new Figure(...) // has a method number
Main.figname = fig
Now, if I want to access Main.figname.number it doesn't work, because the compiler thinks it's of type Any.
But it's also Main.figname.isInstanceOf[Figure] == true, so it's Any and Figure, but doesn't have Figures abilities. Now I can cast it like, Main.figname.asInstanceOf[Figure].number and it works! This is ugly! And I can't present this to my domain users (I'd like to build a internal DSL.)
Note: If I use instead of Any the supertype of Figure it doesn't work either.
Is this a bug in scala 2.10, or a feature?
It is quite logical. You are explicitly returning instances of Any. A workaround would be to have instances of Dynamic all along:
import language.dynamics
import scala.collection.mutable.HashMap
import scala.reflect.ClassTag
trait DynamicBase extends Dynamic {
def as[T:ClassTag]: T
def selectDynamic[T](name: String): DynamicBase
def updateDynamic(name:String)(value: Any)
}
class ReflectionDynamic( val self: Any ) extends DynamicBase with Proxy {
def as[T:ClassTag]: T = { implicitly[ClassTag[T]].runtimeClass.asInstanceOf[Class[T]].cast( self ) }
// TODO: cache method lookup for faster access + handle NoSuchMethodError
def selectDynamic[T](name: String): DynamicBase = {
val ref = self.asInstanceOf[AnyRef]
val clazz = ref.getClass
clazz.getMethod(name).invoke( ref ) match {
case dyn: DynamicBase => dyn
case res => new ReflectionDynamic( res )
}
}
def updateDynamic( name: String )( value: Any ) = {
val ref = self.asInstanceOf[AnyRef]
val clazz = ref.getClass
// FIXME: check parameter type, and handle overloads
clazz.getMethods.find(_.getName == name+"_=").foreach{ meth =>
meth.invoke( ref, value.asInstanceOf[AnyRef] )
}
}
}
object Main extends DynamicBase {
def as[T:ClassTag]: T = { implicitly[ClassTag[T]].runtimeClass.asInstanceOf[Class[T]].cast( this ) }
private val map = new HashMap[String, DynamicBase]
def selectDynamic[T](name: String): DynamicBase = { map(name) }
def updateDynamic(name:String)(value: Any) = {
val dyn = value match {
case dyn: DynamicBase => dyn
case _ => new ReflectionDynamic( value )
}
map(name) = dyn
}
}
Usage:
scala> class Figure {
| val bla: String = "BLA"
| }
defined class Figure
scala> val fig = new Figure() // has a method number
fig: Figure = Figure#6d1fa2
scala> Main.figname = fig
Main.figname: DynamicBase = Figure#6d1fa2
scala> Main.figname.bla
res40: DynamicBase = BLA
All instances are wrapped in a Dynamic instance.
We can recover the actual type using the as method which performs a dynamic cast.
scala> val myString: String = Main.figname.bla.as[String]
myString: String = BLA
You can add any extensions or custom functionalities to Any or any predefined value classes. You can define an implicit value class like this:
implicit class CustomAny(val self: Any) extends AnyVal {
def as[T] = self.asInstanceOf[T]
}
Usage:
scala> class Figure {
| val xyz = "xyz"
| }
defined class Figure
scala> val fig = new Figure()
fig: Figure = Figure#73dce0e6
scala> Main.figname = fig
Main.figname: Any = Figure#73dce0e6
scala> Main.figname.as[Figure].xyz
res8: String = xyz
The implicit value class is not costly like like regular class. It will be optimised in compile time and it will be equivalent to a method call on a static object, rather than a method call on a newly instantiated object.
You can find more info on implicit value class here.