In my project, I have the current workflow:
Kafka message => Spark Streaming/processing => Insert/Update to HBase and/or Phoenix
Both the Insert and Update operation works with HBase directly or through Phoenix (I tested both case).
Now I would like to delete data in HBase/Phoenix if I receive a specific message on Kafka. I did not find any clues/documentation on how I could do that while streaming.
I have found a way to delete data in "static"/"batch" mode with both HBase and Phoenix, but the same code does not work when on streaming (there is no error though, the data is simply not deleted).
Here is how we tried the delete part (we first create a parquet file on which we make a "readStream" to start a "fake" stream):
Main Object:
import org.apache.spark.sql.{Row, SparkSession} import org.apache.spark.sql.functions.{col, concat_ws} import org.apache.spark.sql.streaming.DataStreamWriter
object AppMain{ def main(args: Array[String]): Unit = {
val spark : SparkSession = SparkSession.builder().getOrCreate()
import spark.implicits._
//algo_name, partner_code, site_code, indicator
val df = Seq(("FOO","FII"),
("FOO","FUU")
).toDF("col_1","col_2")
df.write.mode("overwrite").parquet("testParquetStream")
df.printSchema()
df.show(false)
val dfStreaming = spark.readStream.schema(df.schema).parquet("testParquetStream")
dfStreaming.printSchema()
val dfWithConcat = dfStreaming.withColumn("row", concat_ws("\u0000" , col("col_1"),col("col_2"))).select("row")
// using delete class
val withDeleteClass : WithDeleteClass = new WithDeleteClass(spark, dfWithConcat)
withDeleteClass.delete_data()
// using JDBC/Phoenix
//val withJDBCSink : WithJDBCSink = new WithJDBCSink(spark, dfStreaming)
//withJDBCSink.delete_data() }
WithJDBCSink class
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.streaming.DataStreamWriter
class WithJDBCSink (spark : SparkSession,dfToDelete : DataFrame){
val df_writer = dfToDelete.writeStream
def delete_data():Unit = {
val writer = new JDBCSink()
df_writer.foreach(writer).outputMode("append").start()
spark.streams.awaitAnyTermination()
}
}
JDBCSink class
import java.sql.{DriverManager, PreparedStatement, Statement}
class JDBCSink() extends org.apache.spark.sql.ForeachWriter[org.apache.spark.sql.Row] {
val quorum = "phoenix_quorum"
var connection: java.sql.Connection = null
var statement: Statement = null
var ps : PreparedStatement= null
def open(partitionId: Long, version: Long): Boolean = {
connection = DriverManager.getConnection(s"jdbc:phoenix:$quorum")
statement = connection.createStatement()
true
}
def process(row: org.apache.spark.sql.Row): Unit = {
//-----------------------Method 1
connection = DriverManager.getConnection(s"jdbc:phoenix:$quorum")
val query = s"DELETE from TABLE_NAME WHERE key_1 = 'val1' and key_2 = 'val2'"
statement = connection.createStatement()
statement.executeUpdate(query)
connection.commit()
//-----------------------Method 2
//val query2 = s"DELETE from TABLE_NAME WHERE key_1 = ? and key_2 = ?"
//connection = DriverManager.getConnection(s"jdbc:phoenix:$quorum")
//ps = connection.prepareStatement(query2)
//ps.setString(1, "val1")
//ps.setString(2, "val2")
//ps.executeUpdate()
//connection.commit()
}
def close(errorOrNull: Throwable): Unit = {
connection.commit()
connection.close
}
}
WithDeleteClass
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.hadoop.hbase.client.{ConnectionFactory, Delete, HTable, RetriesExhaustedWithDetailsException, Row, Table}
import org.apache.hadoop.hbase.ipc.CallTimeoutException
import org.apache.hadoop.hbase.util.Bytes
import org.apache.log4j.Logger
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import java.util
import org.apache.spark.sql.streaming.DataStreamWriter
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.storage.StorageLevel
import java.sql.Connection
import java.sql.DriverManager
import java.sql.ResultSet
import java.sql.SQLException
import java.sql.Statement
class WithDeleteClass (spark : SparkSession, dfToDelete : DataFrame){
val finalData = dfToDelete
var df_writer = dfToDelete.writeStream
var dfWriter = finalData.writeStream.outputMode("append").format("console").start()
def delete_data(): Unit = {
deleteDataObj.open()
df_writer.foreachBatch((output : DataFrame, batchId : Long) =>
deleteDataObj.process(output)
)
df_writer.start()
}
object deleteDataObj{
var quorum = "hbase_quorum"
var zkPort = "portNumber"
var hbConf = HBaseConfiguration.create()
hbConf.set("hbase.zookeeper.quorum", quorum)
hbConf.set("hbase.zookeeper.property.clientPort", zkPort)
var tableName: TableName = TableName.valueOf("TABLE_NAME")
var conn = ConnectionFactory.createConnection(hbConf)
var table: Table = conn.getTable(tableName)
var hTable: HTable = table.asInstanceOf[HTable]
def open() : Unit = {
}
def process(df : DataFrame) : Unit = {
val rdd : RDD[Array[Byte]] = df.rdd.map(row => Bytes.toBytes(row(0).toString))
val deletions : util.ArrayList[Delete] = new util.ArrayList()
//List all rows to delete
rdd.foreach(row => {
val delete: Delete = new Delete(row)
delete.addColumns(Bytes.toBytes("0"), Bytes.toBytes("DATA"))
deletions.add(delete)
})
hTable.delete(deletions)
}
def close(): Unit = {}
}
}
Any help/pointers would be greatly appreciated
Related
my use case is to read Kafka messages with structured streaming and use foreachBatch to push those messages into HBase by using some bulk Put to gain some performance over single Put, I am able to push messages using foreach (thanks to Spark Structured Streaming with Hbase integration) but not able to do the same for foreachBatch operation.
Can someone please help with this ? Attaching the code below.
KafkaStructured.scala :
package com.test
import java.math.BigInteger
import java.util
import com.fasterxml.jackson.annotation.JsonIgnoreProperties
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
object KafkaStructured {
#JsonIgnoreProperties(ignoreUnknown = true)
case class Header(field1: String, field2: String, field3: String)
#JsonIgnoreProperties(ignoreUnknown = true)
case class Body(fieldx: String)
#JsonIgnoreProperties(ignoreUnknown = true)
case class Event(header: Header, body: Body)
#JsonIgnoreProperties(ignoreUnknown = true)
case class KafkaResp(event: Event)
#JsonIgnoreProperties(ignoreUnknown = true)
case class HBaseDF(field1: String, field2: String, field3: String)
def main(args: Array[String]): Unit = {
val jsonSchema = Encoders.product[KafkaResp].schema
val spark = SparkSession
.builder()
.appName("Kafka Spark")
.getOrCreate()
val df = spark
.readStream
.format("kafka")
.option...
.load()
import spark.sqlContext.implicits._
val flattenedDf: DataFrame =
df
.select($"value".cast("string").as("json"))
.select(from_json($"json", jsonSchema).as("data"))
.select("data.event.header.field1", "data.event.header.field2", "data.event.header.field3")
val hbaseDf = flattenedDf
.as[HBaseDF]
.filter(hbasedf => hbasedf != null && hbasedf.field1 != null)
flattenedDf
.writeStream
.option("truncate", "false")
.option("checkpointLocation", "some hdfs location")
.format("console")
.outputMode("append")
.start()
def bytes(data: String) = {
val bytes = data match {
case data if data != null && !data.isEmpty => Bytes.toBytes(data)
case _ => Bytes.toBytes("")
}
bytes
}
hbaseDf
.writeStream
.foreachBatch(function = (batchDf, batchId) => {
val putList = new util.ArrayList[Put]()
batchDf
.foreach(row => {
val p: Put = new Put(bytes(row.field1))
val cfName= bytes("fam1")
p.addColumn(cfName, bytes("field1"), bytes(row.field1))
p.addColumn(cfName, bytes("field2"), bytes(row.field2))
p.addColumn(cfName, bytes("field3"), bytes(row.field3))
putList.add(p)
})
new HBaseBulkForeachWriter[HBaseDF] {
override val tableName: String = "<my table name>"
override def bulkPut: util.ArrayList[Put] = {
putList
}
}
}
)
.start()
spark.streams.awaitAnyTermination()
}
}
HBaseBulkForeachWriter.scala :
package com.test
import java.util
import java.util.concurrent.ExecutorService
import org.apache.hadoop.hbase.client.{Connection, ConnectionFactory, Put, Table}
import org.apache.hadoop.hbase.security.User
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.spark.sql.ForeachWriter
import scala.collection.mutable
trait HBaseBulkForeachWriter[RECORD] extends ForeachWriter[RECORD] {
val tableName: String
val hbaseConfResources: mutable.Seq[String] = mutable.Seq("location for core-site.xml", "location for hbase-site.xml")
def pool: Option[ExecutorService] = None
def user: Option[User] = None
private var hTable: Table = _
private var connection: Connection = _
override def open(partitionId: Long, version: Long): Boolean = {
connection = createConnection()
hTable = getHTable(connection)
true
}
def createConnection(): Connection = {
val hbaseConfig = HBaseConfiguration.create()
hbaseConfResources.foreach(hbaseConfig.addResource)
ConnectionFactory.createConnection(hbaseConfig, pool.orNull, user.orNull)
}
def getHTable(connection: Connection): Table = {
connection.getTable(TableName.valueOf(tableName))
}
override def process(record: RECORD): Unit = {
val put = bulkPut
hTable.put(put)
}
override def close(errorOrNull: Throwable): Unit = {
hTable.close()
connection.close()
}
def bulkPut: util.ArrayList[Put]
}
foreachBatch allow you to use foreachPartition inside the function.
The code executed inside a foreachPartition only runs once per executor.
So you can create a function to create a put:
def putValue(key: String, columnName: String, data: Array[Byte]): Put = {
val put = new Put(Bytes.toBytes(key))
put.addColumn(Bytes.toBytes("colFamily"), Bytes.toBytes(columnName), data)
}
Then a function to bulk insert the puts
def writePutList(putList: List[Put]): Unit = {
val config: Configuration = HBaseConfiguration.create()
config.set("hbase.zookeeper.quorum", zookeperUrl)
val connection: Connection = ConnectionFactory.createConnection(config)
val table = connection.getTable(TableName.valueOf(tableName))
table.put(putList.asJava)
logger.info("INSERT record[s] " + putList.size + " to table " + tableName + " OK.")
table.close()
connection.close()
}
And use them inside a foreachPartition and a map
def writeFunction: (DataFrame, Long) => Unit = {
(batchData, id) => {
batchData.foreachPartition(
partition => {
val putList = partition.map(
data =>
putValue(data.getAs[String]("keyField"), "colName", Bytes.toBytes(data.getAs[String]("valueField")))
).toList
writePutList(putList)
}
)
}
}
And finally use the function created in your streaming query:
df.writeStream
.queryName("yourQueryName")
.option("checkpointLocation", checkpointLocation)
.outputMode(OutputMode.Update())
.foreachBatch(writeFunction)
.start()
.awaitTermination()
I am unable to build a fat jar for my Kafka-SparkStructuredStreaming-MongoDB pipeline.
I have built StructuredStreamingProgram: receives streaming data from Kafka Topics and apply some parsing and then my intention is to save the structured streaming data into a MongoDB collection.
I have followed this article to build my pipeline https://learningfromdata.blog/2017/04/16/real-time-data-ingestion-with-apache-spark-structured-streaming-implementation/
I have created Helpers.scala and MongoDBForeachWriter.scala as suggested in the article for my streaming pipeline and save it under src/main/scala/example
When i do sbt assembly to build a fat jar i face this errors;
"[error] C:\spark_streaming\src\main\scala\example\structuredStreamApp.scala:63: class MongoDBForeachWriter is abstract; cannot be instantiated
[error] val structuredStreamForeachWriter: MongoDBForeachWriter = new MongoDBForeachWriter(mongodb_uri,mdb_name,mdb_collection,CountAccum)"
I need guidance in making this pipeline work.
Any help will be appreciated
package example
import java.util.Calendar
import org.apache.spark.util.LongAccumulator
import org.apache.spark.sql.Row
import org.apache.spark.sql.ForeachWriter
import org.mongodb.scala._
import org.mongodb.scala.bson.collection.mutable.Document
import org.mongodb.scala.bson._
import example.Helpers._
abstract class MongoDBForeachWriter(p_uri: String,
p_dbName: String,
p_collectionName: String,
p_messageCountAccum: LongAccumulator) extends ForeachWriter[Row] {
val mongodbURI = p_uri
val dbName = p_dbName
val collectionName = p_collectionName
val messageCountAccum = p_messageCountAccum
var mongoClient: MongoClient = null
var db: MongoDatabase = null
var collection: MongoCollection[Document] = null
def ensureMongoDBConnection(): Unit = {
if (mongoClient == null) {
mongoClient = MongoClient(mongodbURI)
db = mongoClient.getDatabase(dbName)
collection = db.getCollection(collectionName)
}
}
override def open(partitionId: Long, version: Long): Boolean = {
true
}
override def process(record: Row): Unit = {
val valueStr = new String(record.getAs[Array[Byte]]("value"))
val doc: Document = Document(valueStr)
doc += ("log_time" -> Calendar.getInstance().getTime())
// lazy opening of MongoDB connection
ensureMongoDBConnection()
val result = collection.insertOne(doc).results()
// tracks how many records I have processed
if (messageCountAccum != null)
messageCountAccum.add(1)
}
}
package example
import java.util.concurrent.TimeUnit
import scala.concurrent.Await
import scala.concurrent.duration.Duration
import org.mongodb.scala._
object Helpers {
implicit class DocumentObservable[C](val observable: Observable[Document]) extends ImplicitObservable[Document] {
override val converter: (Document) => String = (doc) => doc.toJson
}
implicit class GenericObservable[C](val observable: Observable[C]) extends ImplicitObservable[C] {
override val converter: (C) => String = (doc) => doc.toString
}
trait ImplicitObservable[C] {
val observable: Observable[C]
val converter: (C) => String
def results(): Seq[C] = Await.result(observable.toFuture(), Duration(10, TimeUnit.SECONDS))
def headResult() = Await.result(observable.head(), Duration(10, TimeUnit.SECONDS))
def printResults(initial: String = ""): Unit = {
if (initial.length > 0) print(initial)
results().foreach(res => println(converter(res)))
}
def printHeadResult(initial: String = ""): Unit = println(s"${initial}${converter(headResult())}")
}
}
package example
import org.apache.spark.sql.functions.{col, _}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.Trigger
import org.apache.spark.util.LongAccumulator
import example.Helpers._
import java.util.Calendar
object StructuredStreamingProgram {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("OSB_Streaming_Model")
.getOrCreate()
import spark.implicits._
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "10.160.172.45:9092, 10.160.172.46:9092, 10.160.172.100:9092")
.option("subscribe", "TOPIC_WITH_COMP_P2_R2, TOPIC_WITH_COMP_P2_R2.DIT, TOPIC_WITHOUT_COMP_P2_R2.DIT")
.load()
val dfs = df.selectExpr("CAST(value AS STRING)").toDF()
val data =dfs.withColumn("splitted", split($"SERVICE_NAME8", "/"))
.select($"splitted".getItem(4).alias("region"),$"splitted".getItem(5).alias("service"),col("_raw"))
.withColumn("service_type", regexp_extract($"service", """.*(Inbound|Outbound|Outound).*""",1))
.withColumn("region_type", concat(
when(col("region").isNotNull,col("region")).otherwise(lit("null")), lit(" "),
when(col("service").isNotNull,col("service_type")).otherwise(lit("null"))))
val extractedDF = data.filter(
col("region").isNotNull &&
col("service").isNotNull &&
col("_raw").isNotNull &&
col("service_type").isNotNull &&
col("region_type").isNotNull)
.filter("region != ''")
.filter("service != ''")
.filter("_raw != ''")
.filter("service_type != ''")
.filter("region_type != ''")
// sends to MongoDB once every 20 seconds
val mongodb_uri = "mongodb://dstk8sdev06.us.dell.com/?maxPoolSize=1"
val mdb_name = "HANZO_MDB"
val mdb_collection = "Testing_Spark"
val CountAccum: LongAccumulator = spark.sparkContext.longAccumulator("mongostreamcount")
val structuredStreamForeachWriter: MongoDBForeachWriter = new MongoDBForeachWriter(mongodb_uri,mdb_name,mdb_collection,CountAccum)
val query = df.writeStream
.foreach(structuredStreamForeachWriter)
.trigger(Trigger.ProcessingTime("20 seconds"))
.start()
while (!spark.streams.awaitAnyTermination(60000)) {
println(Calendar.getInstance().getTime()+" :: mongoEventsCount = "+CountAccum.value)
}
}
}
with the above by doing corrections i would need to be able to save the structured streaming data into mongodb
You can instantiate object for abstract class. To resolve this issue, implement close function in MongoDBForeachWriter class and make it as as concrete class.
class MongoDBForeachWriter(p_uri: String,
p_dbName: String,
p_collectionName: String,
p_messageCountAccum: LongAccumulator) extends ForeachWriter[Row] {
val mongodbURI = p_uri
val dbName = p_dbName
val collectionName = p_collectionName
val messageCountAccum = p_messageCountAccum
var mongoClient: MongoClient = null
var db: MongoDatabase = null
var collection: MongoCollection[Document] = null
def ensureMongoDBConnection(): Unit = {
if (mongoClient == null) {
mongoClient = MongoClient(mongodbURI)
db = mongoClient.getDatabase(dbName)
collection = db.getCollection(collectionName)
}
}
override def open(partitionId: Long, version: Long): Boolean = {
true
}
override def process(record: Row): Unit = {
val valueStr = new String(record.getAs[Array[Byte]]("value"))
val doc: Document = Document(valueStr)
doc += ("log_time" -> Calendar.getInstance().getTime())
// lazy opening of MongoDB connection
ensureMongoDBConnection()
val result = collection.insertOne(doc)
// tracks how many records I have processed
if (messageCountAccum != null)
messageCountAccum.add(1)
}
override def close(errorOrNull: Throwable): Unit = {
if(mongoClient != null) {
Try {
mongoClient.close()
}
}
}
}
Hope this helps.
Ravi
I am trying to write a parquet file as sink using AvroParquetWriter. The file is created but with 0 length (no data is written). am I doing something wrong ? couldn't figure out what is the problem
import io.eels.component.parquet.ParquetWriterConfig
import org.apache.avro.Schema
import org.apache.avro.generic.{GenericData, GenericRecord}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.hadoop.fs.Path
import org.apache.parquet.avro.AvroParquetWriter
import org.apache.parquet.hadoop.{ParquetFileWriter, ParquetWriter}
import org.apache.parquet.hadoop.metadata.CompressionCodecName
import scala.io.Source
import org.apache.flink.streaming.api.scala._
object Tester extends App {
val env = StreamExecutionEnvironment.getExecutionEnvironment
def now = System.currentTimeMillis()
val path = new Path(s"/tmp/test-$now.parquet")
val schemaString = Source.fromURL(getClass.getResource("/request_schema.avsc")).mkString
val schema: Schema = new Schema.Parser().parse(schemaString)
val compressionCodecName = CompressionCodecName.SNAPPY
val config = ParquetWriterConfig()
val genericReocrd: GenericRecord = new GenericData.Record(schema)
genericReocrd.put("name", "test_b")
genericReocrd.put("code", "NoError")
genericReocrd.put("ts", 100L)
val stream = env.fromElements(genericReocrd)
val writer: ParquetWriter[GenericRecord] = AvroParquetWriter.builder[GenericRecord](path)
.withSchema(schema)
.withCompressionCodec(compressionCodecName)
.withPageSize(config.pageSize)
.withRowGroupSize(config.blockSize)
.withDictionaryEncoding(config.enableDictionary)
.withWriteMode(ParquetFileWriter.Mode.OVERWRITE)
.withValidation(config.validating)
.build()
writer.write(genericReocrd)
stream.addSink{r =>
writer.write(r)
}
env.execute()
The problem is that you don't close the ParquetWriter. This is necessary to flush pending elements to disk. You could solve the problem by defining your own RichSinkFunction where you close the ParquetWriter in the close method:
class ParquetWriterSink(val path: String, val schema: String, val compressionCodecName: CompressionCodecName, val config: ParquetWriterConfig) extends RichSinkFunction[GenericRecord] {
var parquetWriter: ParquetWriter[GenericRecord] = null
override def open(parameters: Configuration): Unit = {
parquetWriter = AvroParquetWriter.builder[GenericRecord](new Path(path))
.withSchema(new Schema.Parser().parse(schema))
.withCompressionCodec(compressionCodecName)
.withPageSize(config.pageSize)
.withRowGroupSize(config.blockSize)
.withDictionaryEncoding(config.enableDictionary)
.withWriteMode(ParquetFileWriter.Mode.OVERWRITE)
.withValidation(config.validating)
.build()
}
override def close(): Unit = {
parquetWriter.close()
}
override def invoke(value: GenericRecord, context: SinkFunction.Context[_]): Unit = {
parquetWriter.write(value)
}
}
This is my idea
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
object pizD {
def filePath = {
new File(this.getClass.getClassLoader.getResource("wikipedia/wikipedia.dat").toURI).getPath
}
def regex(line: String): pichA = {
......
......
pichA(t1, t2)
}
}
case class pichA(t1: String, t2: String)
object dushP {
val conf = new SparkConf()
val sc = new SparkContext(conf)
val mirdd: RDD[pichA] = ???
How to integrate sc.textfile with my methods filePath and regex?I want to combine in order to get new rdd.
val baseRDD =sc.textfile(pizD.filepath).filter(line => {
val value = pizD.regex(line)
if(value !=null)
true
else false
})
Assuming pizD.filepath will give you file name as string and regex() would return null value if regex din match. If the understanding is correct, then above code would do the trick.
I am trying to write a SparkRDD to HBase table using scala(haven't used before). The entire code is this :
import org.apache.hadoop.hbase.client.{HBaseAdmin, Result}
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import scala.collection.JavaConverters._
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark._
import org.apache.hadoop.mapred.JobConf
import org.apache.spark.rdd.PairRDDFunctions
import org.apache.spark.SparkContext._
import org.apache.hadoop.mapred.Partitioner;
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.client._
object HBaseWrite {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("HBaseWrite").setMaster("local").set("spark.driver.allowMultipleContexts","true").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sc = new SparkContext(sparkConf)
val conf = HBaseConfiguration.create()
val outputTable = "tablename"
System.setProperty("user.name", "hdfs")
System.setProperty("HADOOP_USER_NAME", "hdfs")
conf.set("hbase.master", "localhost:60000")
conf.setInt("timeout", 120000)
conf.set("hbase.zookeeper.quorum", "localhost")
conf.set("zookeeper.znode.parent", "/hbase-unsecure")
conf.setInt("hbase.client.scanner.caching", 10000)
sparkConf.registerKryoClasses(Array(classOf[org.apache.hadoop.hbase.client.Result]))
val jobConfig: JobConf = new JobConf(conf,this.getClass)
jobConfig.setOutputFormat(classOf[TableOutputFormat])
jobConfig.set(TableOutputFormat.OUTPUT_TABLE,outputTable)
val x = 12
val y = 15
val z = 25
var newarray = Array(x,y,z)
val newrddtohbase = sc.parallelize(newarray)
def convert(a:Int) : Tuple2[ImmutableBytesWritable,Put] = {
val p = new Put(Bytes.toBytes(a))
p.add(Bytes.toBytes("columnfamily"),
Bytes.toBytes("col_1"), Bytes.toBytes(a))
new Tuple2[ImmutableBytesWritable,Put](new ImmutableBytesWritable(a.toString.getBytes()), p);
}
new PairRDDFunctions(newrddtohbase.map(convert)).saveAsHadoopDataset(jobConfig)
sc.stop()
}
}
The error I get after doing HBaseWrite(main(Array()) is this:
org.apache.spark.SparkException: Task not serializable
How do I proceed to get it done?
The thing you are doing wrong here is defining the convert inside main
If you write this code in this way it may work :
object HBaseWrite {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("HBaseWrite").setMaster("local").set("spark.driver.allowMultipleContexts","true").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sc = new SparkContext(sparkConf)
val conf = HBaseConfiguration.create()
val outputTable = "tablename"
System.setProperty("user.name", "hdfs")
System.setProperty("HADOOP_USER_NAME", "hdfs")
conf.set("hbase.master", "localhost:60000")
conf.setInt("timeout", 120000)
conf.set("hbase.zookeeper.quorum", "localhost")
conf.set("zookeeper.znode.parent", "/hbase-unsecure")
conf.setInt("hbase.client.scanner.caching", 10000)
sparkConf.registerKryoClasses(Array(classOf[org.apache.hadoop.hbase.client.Result]))
val jobConfig: JobConf = new JobConf(conf,this.getClass)
jobConfig.setOutputFormat(classOf[TableOutputFormat])
jobConfig.set(TableOutputFormat.OUTPUT_TABLE,outputTable)
val x = 12
val y = 15
val z = 25
var newarray = Array(x,y,z)
val newrddtohbase = sc.parallelize(newarray)
val convertFunc = convert _
new PairRDDFunctions(newrddtohbase.map(convertFunc)).saveAsHadoopDataset(jobConfig)
sc.stop()
}
def convert(a:Int) : Tuple2[ImmutableBytesWritable,Put] = {
val p = new Put(Bytes.toBytes(a))
p.add(Bytes.toBytes("columnfamily"),
Bytes.toBytes("col_1"), Bytes.toBytes(a))
new Tuple2[ImmutableBytesWritable,Put](new ImmutableBytesWritable(a.toString.getBytes()), p);
}
}
P.S.: The code is not tested , but it should work !
For example, the below method takes Int as argument and returns Double
var toDouble: (Int) => Double = a => {
a.toDouble
}
You can use toDouble(2) and it returns 2.0
The same way you can convert your method to function literal as below.
val convert: (Int) => Tuple2[ImmutableBytesWritable,Put] = a => {
val p = new Put(Bytes.toBytes(a))
p.add(Bytes.toBytes("columnfamily"),
Bytes.toBytes("col_1"), Bytes.toBytes(a))
new Tuple2[ImmutableBytesWritable,Put](new ImmutableBytesWritable(a.toString.getBytes()), p);
}