Rest vs XCC in MarkLogic - rest

In Marklogic, do we have any preference over service call among REST API and XCC?
Which is better for performance and why? Or which one is suitable in what scenario ?
Assumption - Java layer is always present in the system.

In terms of performance, XCC will likely outperform REST API calls. It avoids the overhead of the REST rewriter and request/response processing.
However, it's also important to note that you can make HTTP calls to a MarkLogic HTTP server without configuring it to be a REST API instance. You could invoke an installed JavaScript or XQuery module directly via HTTP.
MarkLogic Data Services provide another means of creating services and generating the Java classes that will be used to invoke data services in an RPC manner. Similar to invoking an installed module, they avoid the overhead of the REST rewriter and parameter processing and can perform better than REST API calls.
The advantage of the MarkLogic REST API is that they provide some standard out of the box functionality that can be leveraged. The MarkLogic Java Client API sits on top of the REST API.
There are pos and cons for either of them. Which to use may depend a lot on performance requirements, preferences for how much code to write vs. leveraging APIs and provided functionality.
Also, note that things don't need to be exclusive. Use what makes sense when it makes sense, and mix-n-match if you need. For instance, maybe most calls work fine and would leverage the Java Client API, but a few particular calls either use XCC or Data Services for high volume and velocity requirements in which every millisecond counts.

Related

What are the advantages of using REST APIs directly over API wrappers?

When should I choose one over the other?
The way I see it API wrappers are so much simpler to use but I feel like there's something I'm not seeing, so can you enlighten me?
REST is a software design to decouple clients from APIs though it is often misunderstood as simple URI design thingy due to the fact that it is often based on HTTP.
Advantages of using APIs and clients that support REST is clearly, that clients are not coupled to any API in particular and are therefore tolerant to changes done on the server side like moving resources to different endpoints. Like a browser is able to present content of a sheer infinite number of web pages, true RESTful clients should behave identical and be able to communicate with any API that supports REST. It may learn on the fly how to deal with new content type by looking up some processing routines dynamically (similar to plugins of certain applications) or fallback to a default handling (reporting errors or presenting unknown data as plain text).
An API wrapper is often used to create clients that are limited to a certain API only. This simplifies development as the client can contain certain logic needed for interaction with the API like en/de-coding messages sent to or received from the service, list all available operations and similar stuff. Often URI endpoints are also either injected through properties or hardcoded into the application. Also, the content type is often limited to XML or JSON and the rules on how to treat responses are hardcoded into the client directly. All these steps however tightly couple the client to the API. In case the API changes (or is enriched by further endpoints) the API wrapper has to be updated and shipped to each consumer otherwise users either won't be able to use the API or make use of the latest features.
API wrapper are often tailor made for the usage of the API and are also often much simpler to implement. They, however, also require constant updating in cases the API itself is changing as the wrapper is incapable of handling these changes itself. REST clients on the other hand are far more complicate to develop as the client somehow has to know (or learn) the semantical meaning of a certain response and has to infer somehow how to act upon received responses. Some parts of it are yet an active field of research (at least in automated processing).
As you asked on when to use which: In cases where you have to create an all-purpose client, a REST client is for sure the right thing to do. However, identifying the correct semantical treatment will be the true chanllenge for these clients IMO. In cases where you only need to provide a client frontend for customers (or users) and not much change is expected on the API itself, a wrapper may be much easier to implement. However, please don't call such a client RESTful!

ArangoDB Foxx as a REST back-end

I am working on an app that would greatly benefit from Arangos' multi-model capabilities. Considering the app needs for the back-end, I have concluded that most, if not all, of it could be served through a REST API as to aid cleaner design for future development and integration with others. The API would then be consumed by several web and mobile front-end frameworks to handle the rest of the logic. The project will be developed with Javascript for the whole stack, using the NodeJS ecosystem.
.
The question itself:
Should and could one use arangodb + foxx to create the complete back-end stack for serving a REST API, thus avoiding another layer/component in the stack? e.g. express/hapi/loopback etc.
.
Major back-end requirements:
Authentication with roles
Sessions
Encryption
Complex querying (root of my initial thought, as to avoid multiple hops between DB and back-end)
Entry parsing, validation and sanitization
Scheduled tasks
.
Mainly looking for:
Known design advantages
Known design limitations
"Hidden" bottlenecks
Other possible future regrets
.
Side question (that might answer some of the above): Could Foxx utilise some of the node middleware available via npm?
Thanks in advance for your time!
You can use ArangoDB Foxx as the sole backend of your application, however it is important to keep the limitations of Foxx (compared to a general purpose JS environment like Node.js) in mind when doing this.
You mention encryption. While ArangoDB does support some cryptography (e.g. HMAC signing and PBKDF2 key derivation for passwords) the support is not as exhaustive and extensible as in Node.js. Also when using computationally expensive cryptography this will affect the performance of the database (because unlike Node.js Foxx is strictly synchronous and thus all operations should be considered blocking).
ArangoDB does not support role-based authentication out of the box but it is perfectly reasonable to implement it within ArangoDB using Foxx (just like you would implement it in Node.js, except you don't need to leave the database).
For sessions there are generally two possible approaches: you can either use a collection with session documents (using ArangoDB as your session backend) or you can keep your services stateless by using signed tokens (Foxx comes with JWT support out of the box).
Complex/stored queries and input validation (using the joi schema library originally written for hapi) are actually some of the main use cases of Foxx so those shouldn't be any problem whatsoever.
Foxx comes with its own mechanism for queueing tasks, which can also be scheduled ahead or recur periodically. However depending on your requirements an external job or message queue may be a better fit. The good thing is you can get started with the built-in job queue right away and still move on to a dedicated solution if the need arises during development.
As for middleware and NPM packages: Foxx is not fully compatible with Node.js code. While we provide a lot of compatibility code and try to keep the core modules compatible where possible, a big difference is that Node.js is generally used to perform asynchronous operations while in ArangoDB all operations are synchronous.
If you have Node.js modules that don't use crypto, file or network I/O and don't use asynchronous APIs (e.g. setTimeout, promises) they may be compatible with Foxx. A lot of utility libraries like lodash work with no problems at all. Even if you find that a module doesn't work it may be possible to write an adapter for it like we have done with mocha (integrated into Foxx) and GraphQL (via the graphql-sync package on NPM).
In my experience it is a good approach to put your Foxx service behind a thin layer of Node.js (e.g. a simple express application that mostly just proxies to your Foxx API) and/or to delegate some parts of your backend to standalone Node.js microservices (e.g. integration with non-HTTP services like e-mail or LDAP) which can be integrated in Foxx via HTTP.
One more thing: while a lot of existing express middleware likely isn't compatible with Foxx because of Node-specific dependencies and async logic, ArangoDB 3 will bring a new version of Foxx with support for middleware using a functionally express-compatible API.
I'm just starting to port my sails application to a FOXX application so I can answer some of your questions.
Role based authorization in ArangoDB is probably at too high a level than you want. In our case, we use an external service to authorize various web and service based applications at a very fine-grained level (much lower than a vertex or an edge). My feeling is that Authorization at that level will require you to write it yourself in javascript. If it's just CRUD on a per collection basis, then it shouldn't require much effort.
For authorization and sessions, I would look at the FOXX example found at: FOXX authorization-session example
It's not clear what you're asking about encryption. If you're talking about SSL connections, then that is natively supported (see arangodb end-points). As for internal encryption, there is a javascript crypto module ArangoDb crypto
Entry validation, etc. is supported by the javascript joi package.
Complex querying... Absolutely and getting even better in ArangoDB version 3.x. Traversals can be chained (go down using one edge collection, then up using another).
You're right on the ball when thinking about efficiency. This is the main reason we're going from sails to FOXX. In our case, we filter query results based on permissions from our external service. This means that we can't use ArangoDB native skip and limit support if these attributes are specified by the client. In sails, we have to bring back results in chunks and collect until we hit the appropriate skip and limit values. By moving to FOXX, we save a lot of network and other resources. We tested this by having sails forward the request to our prototype FOXX implementation. This scaled much better than the sails post-processing setup.
You can use NPM modules with restrictions. See Javascript Modules

Are Retrofit and OkHttp suitable for Java EE/Server-side use?

I like the APIs of the Retrofit and OkHttp rest/http libraries from Square. I am evaluating options for writing a server-side rest client. For each request to my SOAP-based web service, I have to consume another, restful web service, thus my need for a rest client.
My question is, are Retrofit and OkHttp suitable for server-side use in a highly concurrent web app, or are there likely to be issues, known or otherwise, stemming from these APIs having been designed for use primarily outside of the server-side?
Reading the documentation and perusing the code, nothing jumped out at me to indicate that these libraries would not be suitable. But I don't want to be a guinea pig either. Has anyone experienced any issues with server-side use under high load/concurrency? Had success? Anyone from the dev teams for those libraries care to comment? ;)
We use OkHttp on the Square Cash server and we haven't had problems.
Some of the default settings are not suitable for server side usage, for example, the maximum number of concurrent requests per host defaults to 5.
There is some discussion on this at https://github.com/square/okhttp/issues/4354.
In the microservices architecture world (using Spring Framework), Retrofit/Okhttp may not be a good fit as a REST client for inter-service communication. Using WebClient/RestTemplate will have at least the below advantages over using retrofit for the same purpose:
RestTemplate/WebClient can be easily configured to make use of client-side load balancing (Ribbon), thereby requests can be rotated among various instances or another microservice.
Hystrix can be easily configured with RestTemplate, thereby increasing the fault tolerance (circuit breaker pattern) of the overall system w.r.t inter-service communication.
Service discovery can be easily configured using Eureka or Consul, thereby the client need not know the host/port/protocol of the target web service. All we need is to enable the discovery client.
Alternatively, you can also explore Feign, which is a declarative web service client similar to retrofit, but with all the advantages of RestTemplate.
You can also have a loot at the following article:
https://www.javacodemonk.com/retrofit-vs-feignclient-on-server-side-with-spring-cloud-d7f199c4

SOAP vs REST (differences)

I have read articles about the differences between SOAP and REST as a web service communication protocol, but I think that the biggest advantages for REST over SOAP are:
REST is more dynamic, no need to create and update UDDI(Universal Description, Discovery, and Integration).
REST is not restricted to only XML format. RESTful web services can send plain text/JSON/XML.
But SOAP is more standardized (E.g.: security).
So, am I correct in these points?
Unfortunately, there are a lot of misinformation and misconceptions around REST. Not only your question and the answer by #cmd reflect those, but most of the questions and answers related to the subject on Stack Overflow.
SOAP and REST can't be compared directly, since the first is a protocol (or at least tries to be) and the second is an architectural style. This is probably one of the sources of confusion around it, since people tend to call REST any HTTP API that isn't SOAP.
Pushing things a little and trying to establish a comparison, the main difference between SOAP and REST is the degree of coupling between client and server implementations. A SOAP client works like a custom desktop application, tightly coupled to the server. There's a rigid contract between client and server, and everything is expected to break if either side changes anything. You need constant updates following any change, but it's easier to ascertain if the contract is being followed.
A REST client is more like a browser. It's a generic client that knows how to use a protocol and standardized methods, and an application has to fit inside that. You don't violate the protocol standards by creating extra methods, you leverage on the standard methods and create the actions with them on your media type. If done right, there's less coupling, and changes can be dealt with more gracefully. A client is supposed to enter a REST service with zero knowledge of the API, except for the entry point and the media type. In SOAP, the client needs previous knowledge on everything it will be using, or it won't even begin the interaction. Additionally, a REST client can be extended by code-on-demand supplied by the server itself, the classical example being JavaScript code used to drive the interaction with another service on the client-side.
I think these are the crucial points to understand what REST is about, and how it differs from SOAP:
REST is protocol independent. It's not coupled to HTTP. Pretty much like you can follow an ftp link on a website, a REST application can use any protocol for which there is a standardized URI scheme.
REST is not a mapping of CRUD to HTTP methods. Read this answer for a detailed explanation on that.
REST is as standardized as the parts you're using. Security and authentication in HTTP are standardized, so that's what you use when doing REST over HTTP.
REST is not REST without hypermedia and HATEOAS. This means that a client only knows the entry point URI and the resources are supposed to return links the client should follow. Those fancy documentation generators that give URI patterns for everything you can do in a REST API miss the point completely. They are not only documenting something that's supposed to be following the standard, but when you do that, you're coupling the client to one particular moment in the evolution of the API, and any changes on the API have to be documented and applied, or it will break.
REST is the architectural style of the web itself. When you enter Stack Overflow, you know what a User, a Question and an Answer are, you know the media types, and the website provides you with the links to them. A REST API has to do the same. If we designed the web the way people think REST should be done, instead of having a home page with links to Questions and Answers, we'd have a static documentation explaining that in order to view a question, you have to take the URI stackoverflow.com/questions/<id>, replace id with the Question.id and paste that on your browser. That's nonsense, but that's what many people think REST is.
This last point can't be emphasized enough. If your clients are building URIs from templates in documentation and not getting links in the resource representations, that's not REST. Roy Fielding, the author of REST, made it clear on this blog post: REST APIs must be hypertext-driven.
With the above in mind, you'll realize that while REST might not be restricted to XML, to do it correctly with any other format you'll have to design and standardize some format for your links. Hyperlinks are standard in XML, but not in JSON. There are draft standards for JSON, like HAL.
Finally, REST isn't for everyone, and a proof of that is how most people solve their problems very well with the HTTP APIs they mistakenly called REST and never venture beyond that. REST is hard to do sometimes, especially in the beginning, but it pays over time with easier evolution on the server side, and client's resilience to changes. If you need something done quickly and easily, don't bother about getting REST right. It's probably not what you're looking for. If you need something that will have to stay online for years or even decades, then REST is for you.
REST vs SOAP is not the right question to ask.
REST, unlike SOAP is not a protocol.
REST is an architectural style and a design for network-based software architectures.
REST concepts are referred to as resources. A representation of a resource must be stateless. It is represented via some media type. Some examples of media types include XML, JSON, and RDF. Resources are manipulated by components. Components request and manipulate resources via a standard uniform interface. In the case of HTTP, this interface consists of standard HTTP ops e.g. GET, PUT, POST, DELETE.
#Abdulaziz's question does illuminate the fact that REST and HTTP are often used in tandem. This is primarily due to the simplicity of HTTP and its very natural mapping to RESTful principles.
Fundamental REST Principles
Client-Server Communication
Client-server architectures have a very distinct separation of concerns. All applications built in the RESTful style must also be client-server in principle.
Stateless
Each client request to the server requires that its state be fully represented. The server must be able to completely understand the client request without using any server context or server session state. It follows that all state must be kept on the client.
Cacheable
Cache constraints may be used, thus enabling response data to be marked as cacheable or not-cacheable. Any data marked as cacheable may be reused as the response to the same subsequent request.
Uniform Interface
All components must interact through a single uniform interface. Because all component interaction occurs via this interface, interaction with different services is very simple. The interface is the same! This also means that implementation changes can be made in isolation. Such changes, will not affect fundamental component interaction because the uniform interface is always unchanged. One disadvantage is that you are stuck with the interface. If an optimization could be provided to a specific service by changing the interface, you are out of luck as REST prohibits this. On the bright side, however, REST is optimized for the web, hence incredible popularity of REST over HTTP!
The above concepts represent defining characteristics of REST and differentiate the REST architecture from other architectures like web services. It is useful to note that a REST service is a web service, but a web service is not necessarily a REST service.
See this blog post on REST Design Principles for more details on REST and the above stated bullets.
EDIT: update content based on comments
SOAP (Simple Object Access Protocol) and REST (Representation State Transfer) both are beautiful in their way. So I am not comparing them. Instead, I am trying to depict the picture, when I preferred to use REST and when SOAP.
What is payload?
When data is sent over the Internet, each unit transmitted includes both header information and the actual data being sent. The header identifies the source and destination of the packet, while the actual data is referred to as the payload. In general, the payload is the data that is carried on behalf of an application and the data received by the destination system.
Now, for example, I have to send a Telegram and we all know that the cost of the telegram will depend on some words.
So tell me among below mentioned these two messages, which one is cheaper to send?
<name>Arin</name>
or
"name": "Arin"
I know your answer will be the second one although both representing the same message second one is cheaper regarding cost.
So I am trying to say that, sending data over the network in JSON format is cheaper than sending it in XML format regarding payload.
Here is the first benefit or advantages of REST over SOAP. SOAP only support XML, but REST supports different format like text, JSON, XML, etc. And we already know, if we use Json then definitely we will be in better place regarding payload.
Now, SOAP supports the only XML, but it also has its advantages.
Really! How?
SOAP relies on XML in three ways
Envelope – that defines what is in the message and how to process it.
A set of encoding rules for data types, and finally the layout of the procedure calls and responses gathered.
This envelope is sent via a transport (HTTP/HTTPS), and an RPC (Remote Procedure Call) is executed, and the envelope is returned with information in an XML formatted document.
The important point is that one of the advantages of SOAP is the use of the “generic” transport but REST uses HTTP/HTTPS. SOAP can use almost any transport to send the request but REST cannot. So here we got an advantage of using SOAP.
As I already mentioned in above paragraph “REST uses HTTP/HTTPS”, so go a bit deeper on these words.
When we are talking about REST over HTTP, all security measures applied HTTP are inherited, and this is known as transport level security and it secures messages only while it is inside the wire but once you delivered it on the other side you don’t know how many stages it will have to go through before reaching the real point where the data will be processed. And of course, all those stages could use something different than HTTP.So Rest is not safer completely, right?
But SOAP supports SSL just like REST additionally it also supports WS-Security which adds some enterprise security features. WS-Security offers protection from the creation of the message to it’s consumption. So for transport level security whatever loophole we found that can be prevented using WS-Security.
Apart from that, as REST is limited by it's HTTP protocol so it’s transaction support is neither ACID compliant nor can provide two-phase commit across distributed transnational resources.
But SOAP has comprehensive support for both ACID based transaction management for short-lived transactions and compensation based transaction management for long-running transactions. It also supports two-phase commit across distributed resources.
I am not drawing any conclusion, but I will prefer SOAP-based web service while security, transaction, etc. are the main concerns.
Here is the "The Java EE 6 Tutorial" where they have said A RESTful design may be appropriate when the following conditions are met. Have a look.
Hope you enjoyed reading my answer.
REST(REpresentational State Transfer)
REpresentational State of an Object is Transferred is REST i.e. we don't send Object, we send state of Object.
REST is an architectural style. It doesn’t define so many standards like SOAP. REST is for exposing Public APIs(i.e. Facebook API, Google Maps API) over the internet to handle CRUD operations on data. REST is focused on accessing named resources through a single consistent interface.
SOAP(Simple Object Access Protocol)
SOAP brings its own protocol and focuses on exposing pieces of application logic (not data) as services. SOAP exposes operations. SOAP is focused on accessing named operations, each operation implement some business logic. Though SOAP is commonly referred to as web services this is misnomer. SOAP has a very little if anything to do with the Web. REST provides true Web services based on URIs and HTTP.
Why REST?
Since REST uses standard HTTP it is much simpler in just about ever way.
REST is easier to implement, requires less bandwidth and resources.
REST permits many different data formats where as SOAP only permits XML.
REST allows better support for browser clients due to its support for JSON.
REST has better performance and scalability. REST reads can be cached, SOAP based reads cannot be cached.
If security is not a major concern and we have limited resources. Or we want to create an API that will be easily used by other developers publicly then we should go with REST.
If we need Stateless CRUD operations then go with REST.
REST is commonly used in social media, web chat, mobile services and Public APIs like Google Maps.
RESTful service return various MediaTypes for the same resource, depending on the request header parameter "Accept" as application/xml or application/json for POST and /user/1234.json or GET /user/1234.xml for GET.
REST services are meant to be called by the client-side application and not the end user directly.
ST in REST comes from State Transfer. You transfer the state around instead of having the server store it, this makes REST services scalable.
Why SOAP?
SOAP is not very easy to implement and requires more bandwidth and resources.
SOAP message request is processed slower as compared to REST and it does not use web caching mechanism.
WS-Security: While SOAP supports SSL (just like REST) it also supports WS-Security which adds some enterprise security features.
WS-AtomicTransaction: Need ACID Transactions over a service, you’re going to need SOAP.
WS-ReliableMessaging: If your application needs Asynchronous processing and a guaranteed level of reliability and security. Rest doesn’t have a standard messaging system and expects clients to deal with communication failures by retrying.
If the security is a major concern and the resources are not limited then we should use SOAP web services. Like if we are creating a web service for payment gateways, financial and telecommunication related work then we should go with SOAP as here high security is needed.
source1
source2
IMHO you can't compare SOAP and REST where those are two different things.
SOAP is a protocol and REST is a software architectural pattern. There is a lot of misconception in the internet for SOAP vs REST.
SOAP defines XML based message format that web service-enabled applications use to communicate each other over the internet. In order to do that the applications need prior knowledge of the message contract, datatypes, etc..
REST represents the state(as resources) of a server from an URL.It is stateless and clients should not have prior knowledge to interact with server beyond the understanding of hypermedia.
First of all: officially, the correct question would be web services + WSDL + SOAP vs REST.
Because, although the web service, is used in the loose sense, when using the HTTP protocol to transfer data instead of web pages, officially it is a very specific form of that idea. According to the definition, REST is not "web service".
In practice however, everyone ignores that, so let's ignore it too
There are already technical answers, so I'll try to provide some intuition.
Let's say you want to call a function in a remote computer, implemented in some other programming language (this is often called remote procedure call/RPC). Assume that function can be found at a specific URL, provided by the person who wrote it. You have to (somehow) send it a message, and get some response. So, there are two main questions to consider.
what is the format of the message you should send
how should the message be carried back and forth
For the first question, the official definition is WSDL. This is an XML file which describes, in detailed and strict format, what are the parameters, what are their types, names, default values, the name of the function to be called, etc. An example WSDL here shows that the file is human-readable (but not easily).
For the second question, there are various answers. However, the only one used in practice is SOAP. Its main idea is: wrap the previous XML (the actual message) into yet another XML (containing encoding info and other helpful stuff), and send it over HTTP. The POST method of the HTTP is used to send the message, since there is always a body.
The main idea of this whole approach is that you map a URL to a function, that is, to an action. So, if you have a list of customers in some server, and you want to view/update/delete one, you must have 3 URLS:
myapp/read-customer and in the body of the message, pass the id of the customer to be read.
myapp/update-customer and in the body, pass the id of the customer, as well as the new data
myapp/delete-customer and the id in the body
The REST approach sees things differently. A URL should not represent an action, but a thing (called resource in the REST lingo). Since the HTTP protocol (which we are already using) supports verbs, use those verbs to specify what actions to perform on the thing.
So, with the REST approach, customer number 12 would be found on URL myapp/customers/12. To view the customer data, you hit the URL with a GET request. To delete it, the same URL, with a DELETE verb. To update it, again, the same URL with a POST verb, and the new content in the request body.
For more details about the requirements that a service has to fulfil to be considered truly RESTful, see the Richardson maturity model. The article gives examples, and, more importantly, explains why a (so-called) SOAP service, is a level-0 REST service (although, level-0 means low compliance to this model, it's not offensive, and it is still useful in many cases).
Among many others already covered in the many answers, I would highlight that SOAP enables to define a contract, the WSDL, which define the operations supported, complex types, etc.
SOAP is oriented to operations, but REST is oriented at resources.
Personally I would select SOAP for complex interfaces between internal enterprise applications, and REST for public, simpler, stateless interfaces with the outside world.
Addition for:
++ A mistake that’s often made when approaching REST is to think of it as “web services with URLs”—to think of REST as another remote procedure call (RPC) mechanism, like SOAP, but invoked through plain HTTP URLs and without SOAP’s hefty XML namespaces.
++ On the contrary, REST has little to do with RPC. Whereas RPC is service oriented and focused on actions and verbs, REST is resource oriented, emphasizing the things and nouns that comprise an application.
A lot of these answers entirely forgot to mention hypermedia controls (HATEOAS) which is completely fundamental to REST. A few others touched on it, but didn't really explain it so well.
This article should explain the difference between the concepts, without getting into the weeds on specific SOAP features.
REST API
RESTful APIs are the most famous type of API. REST stands REpresentational State Transfer.
REST APIs are APIs that follow standardized principles, properties, and constraints.
You can access resources in the REST API using HTTP verbs.
REST APIs operate on a simple request/response system. You can send a request using these HTTP methods:
GET
POST
PUT
PATCH
DELETE
TRACE
OPTIONS
CONNECT
HEAD
Here are the most common HTTP verbs
GET (read existing data)
POST (create a new response or data)
PATCH (update the data)
DELETE (delete the data)
The client can make requests using HTTP verbs followed by the endpoint.
The endpoint (or route) is the URL you request for. The path determines the resource you’re requesting.
When you send a request to an endpoint, it responds with the relevant data, generally formatted as JSON, XML, plain text, images, HTML, and more.
REST APIs can also be designed with many different endpoints that return different types of data. Accessing multiple endpoints with a REST API requires various API calls.
An actual RESTful API follows the following five constraints:
Client-Server Architecture
The client requests the data from the server with no third-party interpretation.
Statelessness
Statelessness means that every HTTP request happens in complete isolation. Each request contains the information necessary to service the request. The server never relies on information from previous requests. There’s no state.
Cacheability
Responses can be explicitly or implicitly defined as cacheable or non-cacheable to improve scalability and performance. For example, enabling the cache of GET requests can improve the response times of requests for resource data.
Layering
Different layers of the API architecture should work together, creating a scalable system that is easy to update or adjust.
Uniform Interface
Communication between the client and the server must be done in a standardized language that is independent of both. This improves scalability and flexibility.
REST APIs are a good fit for projects that need to be
Flexible
Scalable
Fast
SOAP API
SOAP is a necessary protocol that helped introduce the widespread use of APIs.
SOAP is the acronym for Simple Object Access Protocol.
SOAP is a standardized protocol that relies on XML to make requests and receive responses.
Even though SOAP is based on XML, the SOAP protocol is still in wide usage.
SOAP APIs make data available as a service and are typically used when performing transactions involving multiple API calls or applications where security is the primary consideration.
SOAP was initially developed for Microsoft in 1998 to provide a standard mechanism for integrating services on the internet regardless of the operating system, object model, or programming language.
The “S” in SOAP stands for Simple, and for a good reason — SOAP can be used with less complexity as it requires less coding in the app layer for transactions, security, and other functions.
SOAP has three primary characteristics:
Extensibility of SOAP API
SOAP allows for extensions that introduce more robust features, such as Windows Server Security, Addressing, and more.
Neutrality of SOAP API
SOAP is capable of operating over a wide range of protocols, like UDP, JMS, SMTP, TCP, and HTTP.can operate.
Independence of SOAP API
SOAP API responses are purely based on XML. Therefore SOAP APIs are platform and language independent.
Developers continue to debate the pros and cons of using SOAP and REST. The best one for your project will be the one that aligns with your needs.
SOAP APIs remain a top choice for corporate entities and government organizations that prioritize security, even though REST has largely dominated web applications.
SOAP is more secure than REST as it uses WS-Security for transmission along with Secure Socket Layer
SOAP also has more excellent transactional reliability, which is another reason why SOAP historically has been favored by the banking industry and other large entities.
What is REST
REST stands for representational state transfer, it's actually an architectural style for creating Web API which treats everything(data or functionality) as recourse.
It expects; exposing resources through URI and responding in multiple formats and representational transfer of state of the resources in stateless manner. Here I am talking about two things:
Stateless manner: Provided by HTTP.
Representational transfer of state: For example if we are adding an employee. .
into our system, it's in POST state of HTTP, after this it would be in GET state of HTTP, PUT and DELETE likewise.
REST can use SOAP web services because it is a concept and can use any protocol like HTTP, SOAP.SOAP uses services interfaces to expose the business logic. REST uses URI to expose business logic.
REST is not REST without HATEOAS. This means that a client only knows the entry point URI and the resources are supposed to return links the client should follow. Those fancy documentation generators that give URI patterns for everything you can do in a REST API miss the point completely. They are not only documenting something that's supposed to be following the standard, but when you do that, you're coupling the client to one particular moment in the evolution of the API, and any changes on the API have to be documented and applied, or it will break.
HATEOAS, an abbreviation for Hypermedia As The Engine Of Application State, is a constraint of the REST application architecture that distinguishes it from most other network application architectures. The principle is that a client interacts with a network application entirely through hypermedia provided dynamically by application servers. A REST client needs no prior knowledge about how to interact with any particular application or server beyond a generic understanding of hypermedia. By contrast, in some service-oriented architectures (SOA), clients and servers interact through a fixed interface shared through documentation or an interface description language (IDL).
Reference 1
Reference 2
Although SOAP and REST share similarities over the HTTP protocol, SOAP is a more rigid set of messaging patterns than REST. The rules in SOAP are relevant because we can’t achieve any degree of standardization without them. REST needs no processing as an architecture style and is inherently more versatile. In the spirit of information exchange, both SOAP and REST depend on well-established laws that everybody has decided to abide by.
The choice of SOAP vs. REST is dependent on the programming language you are using the environment you are using and the specifications.
To answer this question it’s useful to understand the evolution of the architecture of distributed applications from simple layered architectures, to object & service based, to resources based, & nowadays we even have event based architectures. Most large systems use a combination of styles.
The first distributed applications had layered architectures. I'll assume everyone here knows what layers are. These structures are neatly organized, and can be stacks or cyclical structures. Effort is made to maintain a unidirectional data flow.
Object-based architectures evolved out of layered architectures and follow a much looser model. Here, each component is an object (often called a distributed object). The objects interact with one another using a mechanism similar to remote procedure calls - when a client binds to a distributed object it loads an implementation of the objects interface into its address space. The RPC stub can marshal a request & receive a response. Likewise the objects interface on the server is an RPC style stub. The structure of these object based systems is not as neatly organized, it looks more like an object graph.
The interface of a distributed object conceals its implementation. As with layered components, if the interface is clearly defined the internal implementation can be altered - even replaced entirely. 
Object-based architectures provide the basis for encapsulating services. A service is provided by a self-contained entity, though internally it can make use of other services. Gradually object-based architectures evolved into service-oriented architectures (SOAs).
With SOA, a distributed application is composed of services. These services can be provided across administrative domains - they may be available across the web (i.e. a storage service offered by a cloud provider).
As web services became popular, and more applications started using them, service composition (combining services to form new ones) became more important. One of the problems with SOA was that integrating different services could become extremely complicated.

While SOAP is a protocol, its use implies a service oriented architecture. SOAP attempted to provide a standard for services whereby they would be composable and easily integrated.
Resource-based architectures were a different approach to solving the integration problems of SOA. The idea is to treat the distributed system as a giant collection of resources that are individually managed by components.
This led to the development of RESTful architectures. One thing that characterizes RESTful services is stateless execution. This is different than SOA where the server maintains the state.
So… how do service-specific interfaces, as provided by service-oriented architectures (including those that use SOAP) compare with resource-based architecture like REST?


While REST is simple, it does not provide a simple interface for complex communication schemes. For example, if you are required to use transactions REST is not appropriate, it is better to keep the complex state encapsulated on the server than have the client manage the transaction. But there are many scenarios where the orthogonal use of resources in RESTful architectures greatly simplifies integration of services in what would otherwise mean an explosion of service interfaces. Another tradeoff is resource-based architectures put more complexity on the client & increase traffic over the network while service-based increase the complexity of the server & tax its memory & CPU resources.
Some people have also mentioned common HTTP services or other services that do not satisfy the requirements of RESTful architecture or SOAP. These too can be categorized as either service-based or resource-based. These have the advantage of being simpler to implement. You'd only use such an approach if you knew your service will never need to be integrated across administrative domains since this makes no attempt at fixing the integration issues that arise.
These sorts of HTTP-based services, especially Pseudo-RESTful services are still the most common types. Implementing SOAP is complicated and should only be used if you really need it - i.e. you need a service that's easily integrated across domains and you want it to have a service-interface. There are still cases where this is needed. A true RESTful service is also difficult to implement, though not as difficult as SOAP.

Are both REST and SOAP an implementation of SOA?

I have a question around SOA.
Are SOAP and REST both considered approaches for implementing a service-oriented architecture?
I know that REST is a style, thus this leads me to this question.
Yes, they both can be considered approaches for implementing a SOA. I suppose you could say REST is a style, but then you'd have to say SOAP is one too. I would simply consider them different techniques to accomplish the same end. SOAP mimics a Remote Procedure Call and REST is inline with how the web (http) was designed.
When creating/adapting services to work in a SOA architecture the interfaces exposed can be whatever you desire as long as the consumers have the ability to process the response.
For the sake of giving a more concise answer, I will interpret REST as being a HTTP interface which can perform the CRUD operations, perhaps responding to requests with an XML or JSON object.
SOAP tends to lend itself to more complex operations on the service side, the libraries and involved XML's of SOAP introduces complexity to the system.
If all you require is the representation of resources which can be accessed through simple CRUD operations it is worth considering implementing a REST interface to reduce complexity, even if the service will run along side services with SOAP interfaces. All that would be required is the consumer of the service is able to deal with the RESTful style responses as well as acting as a SOAP client.
There would be arguments for consistency across the service to improve maintainability and ease of development, but this isn't a necessity and should only be included in the decision process.
When including a messaging bus into the design, heterogeneous services can be dealt with even more effectively by inserting standard transforms (XSLT, custom) into the process which can translate the response from services into a standard format understood by the system as a whole.
If you simply ask whether both of them can be implemented using Service Oriented Architecture - yes they do. They can even be used both at once in a single SOA-based project.
If you are asking whether SOAP or REST should be used - there is no answer unless you provided project specifications.
SOAP and REST are ways of building services.
SOAP is XML based and, in theory, supports more than just HTTP, and has standards for interface definition (WSDL), and things like security (WS_Security).
REST is a style for doing web services in a resource-oriented manner using a defined set of web operations (GET, POST, etc), but defines very little else.
However, SOA is about much more than just a bunch of services. Choosing REST or SOAP is the easy part.