GCD ( greatest common divisor ) of a list/array of numbers in LISP - lisp

How can I make the GCD of a list of numbers in LISP? I want to calculate the Greatest Common Divisor of a given input list.

Common Lisp has a gcd function which takes any number of arguments. So one way is to use that function and apply in an obvious way.
That's a fairly bad way though. A better way is to rely on the fact that GCD is an associative function. This means that gcd(a, gcd(b, c)) = gcd(gcd(a, b), c). That leads you to a very neat approach for computing the gcd of arbitrary length lists:
Given a list l, and a current gcd g, then
if l is empty the result is g;
if l is not empty then it is of the form (a . r), and the result is now the gcd of r using a current value of gcd(g, a).
As an additional trick: once you've got 1 as the current value, you can stop.
If you are required to write the two argument function, here are two implementations which work for non-zero natural numbers:
(defun gcd/euclidean (a b)
(declare (type (integer 0) a b))
(cond
((= a 0) b)
((= a b) a)
((> a b) (gcd/euclidean (mod a b) b))
(t (gcd/euclidean b a))))
(defun gcd/euclid (a b)
(declare (type (integer 1) a b))
(cond
((= a b) a)
((> a b) (gcd/euclid (- a b) b))
(t (gcd/euclid b a))))
One of these is much better than the other!

Related

How to use a map function with variables in racket (define)

So I have a problem I'm trying to solve.
Write a function called parity that takes four numbers, where each
number is either 0 or 1, and produces another number that is either 0 or 1. Your function should produce 1 if there are an odd number
of ones in the input numbers and 0 if there are an even number of ones.
I'm trying to do this in a roundabout way using the map function, currently sitting at
(define (parity a b c d)
(map (lambda (thing)
(positive? thing))
'(a b c d)))
Then I would like to somehow create a new list using only the positive numbers, then find the length, then equate that to a 0 or a 1. However, my code doesn't work after I define it due to the positive? searching for a number and finding an a.
First error is already mentioned in comments- instead of '(a b c d), use (list a b c d) to get values of symbols.
There are two ways to get desired output and you don't need map in any of them:
I can follow your process of thinking and use exactly these functions:
create a new list using only the positive numbers -> filter
then find the length -> length
then equate that to a 0 or a 1. -> odd?/even? length or modulo
(define (parity a b c d)
(let* ((only-positive (filter positive? (list a b c d)))
(len (length only-positive)))
(if (odd? len) 1 0)))
This can be shortened to
(define (parity a b c d)
(if (odd? (length (filter positive? (list a b c d)))) 1 0))
And note, that problem description almost exactly matches this solution: if (odd (number of (ones in the input numbers))) 1 0.
Shorter solution with apply:
(define (parity a b c d)
(modulo (apply + (list a b c d)) 2))

Match Hash Tables in Typed Racket

I'm trying to match against a hash table in typed racket, but I keep getting the following error. The code works fine in untyped racket and I've tried changing it up some to no effect. The error looks like it's happening somewhere after the match macro gets expanded but I'm not familiar enough with racket to understand where or how to debug the issue.
Is is possible to use the hash-table pattern in typed racket?
(match (make-hash '((a . 2) (b . 3) (c . 2)))
[(hash-table _ ...) #t])
Type Checker: Polymorphic function `hash-map' could not be applied to arguments:
Domains: HashTableTop (-> Any Any c) Any
HashTableTop (-> Any Any c)
(HashTable a b) (-> a b c) Any
(HashTable a b) (-> a b c)
Arguments: (Mutable-HashTable Symbol Integer) (All (a) (-> a * (Listof a)))
it's impossible.
in the match macro, the hash-table form expands to syntax that includes the hash-map function, viz (lambda (e) (hash-map e list)). this is correct but its type is too abstract for typed racket to infer it. for the type checker to be satisfied, we'd need:
(lambda #:forall (k v) ([e : (HashTable k v)])
(hash-map e
(λ ([k : k] [v : v])
(list k v))))
there's no practical way to specify this, so the hash-table matcher is unusable in typed racket.
if a for loop is usually best, e.g.
(for ([(k v) (make-hash '((a . 2) (b . 3) (c . 2)))] #:when (even? v))
(printf "~a and ~a~n" k v))
or else something like (hash-keys m)
otherwise, positional matching requires advanced knoweldge of typed racket. for example, the following function, hash-set/cond, takes a hash table and arguments of the form (flag k v) ... and updates (if key already in table) or inserts (if key not already in table) each k/v pair if its associated flag is truthy:
(: hash-set/cond (∀ (k v) (->* ((HashTable k v))
#:rest-star (Any k v)
(HashTable k v))))
(define (hash-set/cond ht . args)
(let loop ([ht : (HashTable k v) ht]
[args : (Rec r (U (List* Any k v r) Null)) args])
(if (null? args)
ht
(loop (if (car args)
(hash-set ht (cadr args) (caddr args))
ht)
(cdddr args)))))
e.g.
(hash-set/cond (hash 'a 20 'b "yes")
(even? 3) 'a 10 ; 3's not even, so 'a isn't modified
#t 'b "canary" ; necessarily set 'b to "canary"
'im-a-truthy-value! 'c 'new-value) ; ditto
returns #hash((a . 20) (b . "canary") (c . new-value)).
so if you end-up using typed racket a lot and want to use this kind of functionality, then it can be very useful in certain places! still, typed racket's type system can represent—but not handle—certain recursive hash table types. this is because, when checking the type of the value, hash? cannot refine the type of the hash table beyond it being a hash table with some type of key and value, i.e. hash? : (-> Any Boolean : HashTableTop) instead of (-> Any Boolean : (HashTable k v)). this makes recursing over particular recursively defined JSON schemata impossible. in these cases you must use untyped racket, though the saving grace here is that racket contracts can handle such complex definitions.
if your project is heavily based on complex hash tables, then clojure or janet are likely better language choices.

Creating a custom reverse of list

I'm trying to create a custom reverse of list in Lisp. I'm pretty new to Lisp programming, and still struggling with syntax. This is my code so far
(defun new-union(l1 l2)
(setq l (union l1 l2))
(let (res)
(loop for x in l
do(setq res (cons (car l) res))
do(setq l (cdr l)))))
Here I'm taking two lists, and forming union list l. Then for reversing the list l I'm accessing element wise to append it to a new list res. Then consequently using the cons, car and cdr to update the list.
However, I'm getting a weird output. Can someone please suggest where I'm going wrong?
I'm aware of an inbuilt function for the same called nreverse , but I wanted to experiment to see how the Lisp interprets the data in list.
On printing res at the end, for example
(new-union '(a b c) '(d e f))
the output for above call gives me
(L A A A A A A A X X)
I think I'm doing the looping wrong.
Problems
(summary of previous comments)
Bad indentation, spaces, and names; prefer this:
(defun new-union (l1 l2)
(setq list (union l1 l2))
(let (reversed)
(loop for x in list
do (setq res (cons (car list) reversed))
do (setq list (cdr list)))))
Usage of SETQ on undeclared, global variables, instead of a LET
Mutation of the structure being iterated (LIST)
Not using X inside the LOOP (why define it?)
The return value is always NIL
Refactoring
(defun new-union (l1 l2)
(let ((reverse))
(dolist (elt (union l1 l2) reverse)
(push elt reverse))))
Define a local reverse variable, bound to NIL by default (you could set it to '(), this is sometimes preferred).
Use DOLIST to iterate over a list and perform side-effects; the third argument is the return value; here you can put the reverse variable where we accumulate the reversed list.
For each element elt, push it in front of reverse; if you want to avoid push for learning purposes, use (setf reverse (cons elt reverse)).
Common Lisp is multi-paradigm and favors pragmatic solutions: sometimes a loop is more natural or more efficient, and there is no reason to force yourself to adopt a functional style.
Functional implementation
However, lists provide a natural inductive structure: recursive approaches may be more appropriate in some cases.
If you wanted to use a functional style to compute reverse, be aware that tail-call optimization, though commonly available, is not required by the language specification (it depends on your implementation capabilities and compiler options).
With default settings, SBCL eliminates calls in tail positions and would eliminate the risk of stack overflows with large inputs. But there are other possible ways to obtain bad algorithmic complexities (and wasteful code) if you are not careful.
The following is what I'd use to define the combination of union and reverse; in particular, I prefer to define a local function with labels to avoid calling new-union with a dummy nil parameter. Also, I iterate the list resulting from the union only once.
(defun new-union (l1 l2)
(labels ((rev (list acc)
(etypecase list
(null acc)
(cons (rev (rest list)
(cons (first list) acc))))))
(rev (union l1 l2) nil)))
Trace
0: (NEW-UNION (A B C) (D E F))
1: (UNION (A B C) (D E F))
1: UNION returned (C B A D E F)
1: (REV (C B A D E F) NIL)
2: (REV (B A D E F) (C))
3: (REV (A D E F) (B C))
4: (REV (D E F) (A B C))
5: (REV (E F) (D A B C))
6: (REV (F) (E D A B C))
7: (REV NIL (F E D A B C))
7: REV returned (F E D A B C)
6: REV returned (F E D A B C)
5: REV returned (F E D A B C)
4: REV returned (F E D A B C)
3: REV returned (F E D A B C)
2: REV returned (F E D A B C)
1: REV returned (F E D A B C)
0: NEW-UNION returned (F E D A B C)
Remark
It is quite surprising to reverse the result of union, when the union is supposed to operate on unordered sets: the order of elements in the result do not have to reflect the ordering of list-1 or list-2 in any way. Sets are unordered collections having no duplicates; if your input lists already represent sets, as hinted by the name of the function (new-union), then it makes no sense to remove duplicates or expect the order to be meaningful.
If, instead, the input lists represents sequences of values, then the order matters; feel free to use append or concatenate in combination with remove-duplicates, but note that the latter will remove elements in front of the list by default:
(remove-duplicates (concatenate 'list '(4 5 6) '(2 3 4)))
=> (5 6 2 3 4)
You may want to use :from-end t instead.
Ok...I think you want to take two lists, combine them together, remove duplicates, and then reverse them.
Your biggest problem is that you're using loops instead of recursion. LISP was born to do list processing using recursion. It's far more natural.
Below is a very simple example of how to do that:
(defvar l1 '(a b c)) ;first list
(defvar l2 '(d e f)) ;second list
(defun my-reverse (a b) ;a and b are lists
"combines a and b into lst, removes duplicates, and reverses using recursion"
(let ((lst (remove-duplicates (append a b))))
(if (> (length lst) 0)
(append (last lst) (my-reverse nil (butlast lst)))
nil)))
Sample Run compiled in SLIME using SBCL
; compilation finished in 0:00:00.010
CL-USER> l1 ;; verify l1 variable
(A B C)
CL-USER> l2 ;; verify l2 variable
(D E F)
CL-USER> (append l1 l2) ;; append l1 and l2
(A B C D E F)
CL-USER> (my-reverse l1 l2) ;; reverse l1 and l2
(F E D C B A)

Occurrence typing with polymorphic union types

Suppose I want to convert the following untyped code into typed racket. These functions are inspired by SICP where they show how a data structure can be constructed purely from functions.
(define (make-pair x y)
(lambda (c)
(cond
((= c 1) x)
((= c 2) y)
(error "error in input, should be 1 or 2"))))
(define (first p) (p 1))
(define (second p) (p 2))
To convert it straight to typed racket, the return value of the make-pair function seems to be (: make-pair (All (A B) (-> A B (-> Number (U A B))))). And following this, the type of first should be (: first (All (A B) (-> (-> Number (U A B)) A))). However, while implementing the function we can't call (p 1) directly now because we need some sort of occurrence typing to make sure first returns only of type A. Changing the return type of first to (U A B) works but then the burden of occurrence typing goes on the user and not in the API. So in this scenario how can we use occurrence typing inside first (that is, how to use a predicate for type variable A) so that we can safely return only the first component of the pair?
UPDATE
I tried an approach which differs a bit from above and requires the predicates for A and B to be supplied as arguments to make-pair function. Below is the code:
#lang typed/racket
(define-type FuncPair (All (A B) (List (-> Number (U A B)) (-> A Boolean) (-> B Boolean))))
(: make-pair (All (A B) (-> A B (-> A Boolean) (-> B Boolean) (FuncPair A B))))
(define (make-pair x y x-pred y-pred)
(list
(lambda ([c : Number])
(cond
((= c 1) x)
((= c 2) y)
(else (error "Wrong input!"))))
x-pred
y-pred))
(: first (All (A B) (-> (FuncPair A B) Any)))
(define (first p)
(let ([pair-fn (car p)]
[fn-pred (cadr p)])
(let ([f-value (pair-fn 1)])
(if (fn-pred f-value)
f-value
(error "Cannot get first value in pair")))))
However, this fails in the check (fn-pred f-value) condition with error expected: A
given: (U A B) in: f-value
From the untyped code at the start of your question, it seems like a pair of A and B is a function that given 1, gives back A, and given 2, gives back B. The way to express this type of function is with a case-> type:
#lang typed/racket
(define-type (Pairof A B)
(case-> [1 -> A] [2 -> B]))
The accessors can be defined the same way as your original untyped code, just by adding type annotations:
(: first : (All (A B) [(Pairof A B) -> A]))
(define (first p) (p 1))
(: second : (All (A B) [(Pairof A B) -> B]))
(define (second p) (p (ann 2 : 2)))
The type of the constructor should be:
(: make-pair : (All (A B) [A B -> (Pairof A B)]))
But the constructor doesn't quite work as-is. One thing wrong with it is that your else clause is missing the else part of it. Fixing that gives you:
(: make-pair : (All (A B) [A B -> (Pairof A B)]))
(define (make-pair x y)
(lambda (c)
(cond
[(= c 1) x]
[(= c 2) y]
[else (error "error in input, should be 1 or 2")])))
This is almost right, and if typed racket were awesome enough, it would be. Typed racket treats equal? specially for occurrence typing, but it doesn't do the same thing for =. Changing = to equal? fixes it.
(: make-pair : (All (A B) [A B -> (Pairof A B)]))
(define (make-pair x y)
(lambda (c)
(cond
[(equal? c 1) x]
[(equal? c 2) y]
[else (error "error in input, should be 1 or 2")])))
Ideally occurrence typing should work with =, but perhaps the fact that things like (= 2 2.0) return true makes that both harder to implement and less useful.

Sublist in common lisp

I have list of lists in my program
for example
(( a b) (c d) (x y) (d u) ........)
Actually I want to add 1 new element in the list but new element would be a parent of all existing sublists.
for example if a new element is z, so my list should become like this
( (z( a b) (c d) (x y) (d u) ........))
I have tried with push new element but it list comes like this
( z( a b) (c d) (x y) (d u) ........)
that I dont want as I have lot of new elements coming in and each element represents some block of sublists in the list
Your help would highly be appreciated.
It sounds like you just need to wrap the result of push, cons, or list* in another list:
(defun add-parent (children parent)
(list (list* parent children)))
(add-parent '((a b) (c d) (x y) (d u)) 'z)
;;=> ((Z (A B) (C D) (X Y) (D U)))
This is the approach that I'd probably take with this. It's just important that you save the return value. In this regard, it's sort of like the sort function.
However, if you want to make a destructive macro out of that, you can do that too using define-modify-macro. In the following, we use define-modify-macro to define a macro add-parentf that updates its first argument to be the result of calling add-parent (defined above) with the first argument and the parent.
(define-modify-macro add-parentf (parent) add-parent)
(let ((kids (copy-tree '((a b) (c d) (x y) (d u)))))
(add-parentf kids 'z)
kids)
;;=> ((Z (A B) (C D) (X Y) (D U)))
For such a simple case you can also use a shorter backquote approach, for example:
(let ((parent 'z) (children '((a b) (c d) (e f))))
`((,parent ,#children)))
If you aren't familiar with backquote, I'd recommend reading the nice and concise description in Appendix D: Read Macros of Paul Graham's ANSI Common Lisp.