what is the default grafana setting for $__rate_interval - grafana

I understand that rate(xyz[5m]) * 60 is the rate of xyz per minute, averaged over 5 mins.
How then would $__rate_interval and $__interval be defined,
possibly in the same syntax?
What format is rate being measured here, in my panel? Per minute, per second?
What is the interval= 30s in my panel here? My scraping interval is set to 5s.
How do i change the rate format?

See New in Grafana 7.2: $__rate_interval for Prometheus rate queries that just work.
Rate is always per second. See Grafana documentation for the rate function.
Click on Query options, then click on the Info-Symbol. An explanation will be displayed.
To get rate per minute, just multiply the rate with 60.
Edit: ($__rate_interval and $_interval)
Prometheus periodically fetches data from your application. Grafana periodically fetches Data from Prometheus. Grafana does not know, how often Prometheus polls your application for data. Grafana will estimate this time by looking at the data. The $__interval variable expands to the duration between two data points in the graph. (Note that this is only true for small time ranges and high resolution as the intended use case for $__interval is reducing the number of data points when the time range is wide. See Approximate Calculation of $__interval.)
If the time-distance between every two data points in each series is 15 seconds, it does not make sense to use anything less than [15s] as interval in the rate function. The rate function works best with at least 4 data points. Therefore [1m] would be much better than anything betweeen [15s] and [1m]. This is what $__rate_interval tries to achieve: guessing a minimal sensible interval for the rate function.
Personally, I think, this does not always work if your application delivers sparse data. I prefer using fixed intervals like 10m or even 1h or 1d in these situations. The interval need to be great enough to get you enough data points for the metric to work with the rate function.
A different approach would be to use any of $__rate_interval and $_interval but also set the Min step parameter for the query in the Grafana UI to be big enough.

Related

Don't see all points in Grafana on lower scales

On lower scale I am obviously seeing several outliers, maximal of which is 18211
if I zoom in then I am starting to see additional outliers
Is it possible to configure Grafana to show all points all the time or aggregate them differently?
Backend is Graphite.
No, this is not possible due to space limitations
For example:
Suppose you have 60 places and you want to fill them with numbers
If the time period is one hour, then in each of these places it will display the metrics stored of every minute
But if you make this interval smaller and convert it to a minute, each of these places will display the metrics stored of every second.

How to sum prometheus counters when k8s pods restart

I'm running Prometheus in a kubernetes cluster. All is running find and my UI pods are counting visitors.
Please ignore the title, what you see here is the query at the bottom of the image. It's a counter. The gaps in the graph are due to pods restarting. I have two pods running simultaneously!
Now suppose I would like to count the total of visitors, so I need to sum over all the pods
This is what I expect considering the first image, right?
However, I don't want the graph to drop when a pod restarts. I would like to have something cumulative over a specified amount of time (somehow ignoring pods restarting). Hope this makes any sense. Any suggestions?
UPDATE
Below is suggested to do the following
Its a bit hard to see because I've plotted everything there, but the suggested answer sum(rate(NumberOfVisitors[1h])) * 3600 is the continues green line there. What I don't understand now is the value of 3 it has? Also why does the value increase after 21:55, because I can see some values before that.
As the approach seems to be ok, I noticed that the actual increase is actually 3, going from 1 to 4. In the graph below I've used just one time series to reduce noise
Rate, then sum, then multiply by the time range in seconds. That will handle rollovers on counters too.
Prometheus doesn't provide the ability to sum counters, which may be reset. Additionally, the increase() function in Prometheus has some issues, which may prevent from using it for querying counter increase over the specified time range:
It may return fractional values over integer counters because of extrapolation. See this issue for details.
It may miss counter increase between raw sample just before the lookbehind window in square brackets and the first raw sample inside the lookbehind window. For example, increase(NumberOfVisitors[1m]) at timestamp t may miss the counter increase between the last raw sample just before the t-1m time and the first raw sample at (t-1m ... t] time range. See more details here and here.
It may miss the increase for the first raw sample in a time series. For example, if the NumberOfVisitors counter is increased to 10 just before the first scrape of this counter by Prometheus, then increase() over the time range with the first sample would under-count the counter increase by 10.
Prometheus developers are going to fix these issues - see this design doc. In the mean time it is possible to use VictoriaMetrics - its' increase() function is free from these issues.
Returning to the original question - the sum of multiple counters, which may be reset, can be returned with the following MetricsQL query in VictoriaMetrics:
running_sum(sum(increase(NumberOfVisitor)))
It uses the following functions:
increase() for calculating increase per each counter between adjacent points on the graph.
sum() for summing the calculated increases per each point on the graph.
running_sum() for calculating the running sum over per-point increases on the graph.

Prometheus query quantile of pod memory usage performance

I'd like to get the 0.95 percentile memory usage of my pods from the last x time. However this query start to take too long if I use a 'big' (7 / 10d) range.
The query that i'm using right now is:
quantile_over_time(0.95, container_memory_usage_bytes[10d])
Takes around 100s to complete
I removed extra namespace filters for brevity
What steps could I take to make this query more performant ? (except making the machine bigger)
I thought about calculating the 0.95 percentile every x time (let's say 30min) and label it p95_memory_usage and in the query use p95_memory_usage instead of container_memory_usage_bytes, so that i can reduce the amount of points the query has to go through.
However, would this not distort the values ?
As you already observed, aggregating quantiles (over time or otherwise) doesn't really work.
You could try to build a histogram of memory usage over time using recording rules, looking like a "real" Prometheus histogram (consisting of _bucket, _count and _sum metrics) although doing it may be tedious. Something like:
- record: container_memory_usage_bytes_bucket
labels:
le: 100000.0
expr: |
container_memory_usage_bytes > bool 100000.0
+
(
container_memory_usage_bytes_bucket{le="100000.0"}
or ignoring(le)
container_memory_usage_bytes * 0
)
Repeat for all bucket sizes you're interested in, add _count and _sum metrics.
Histograms can be aggregated (over time or otherwise) without problems, so you can use a second set of recording rules that computes an increase of the histogram metrics, at much lower resolution (e.g. hourly or daily increase, at hourly or daily resolution). And finally, you can use histogram_quantile over your low resolution histogram (which has a lot fewer samples than the original time series) to compute your quantile.
It's a lot of work, though, and there will be a couple of downsides: you'll only get hourly/daily updates to your quantile and the accuracy may be lower, depending on how many histogram buckets you define.
Else (and this only came to me after writing all of the above) you could define a recording rule that runs at lower resolution (e.g. once an hour) and records the current value of container_memory_usage_bytes metrics. Then you could continue to use quantile_over_time over this lower resolution metric. You'll obviously lose precision (as you're throwing away a lot of samples) and your quantile will only update once an hour, but it's much simpler. And you only need to wait for 10 days to see if the result is close enough. (o:
The quantile_over_time(0.95, container_memory_usage_bytes[10d]) query can be slow because it needs to take into account all the raw samples for all the container_memory_usage_bytes time series on the last 10 days. The number of samples to process can be quite big. It can be estimated with the following query:
sum(count_over_time(container_memory_usage_bytes[10d]))
Note that if the quantile_over_time(...) query is used for building a graph in Grafana (aka range query instead of instant query), then the number of raw samples returned from the sum(count_over_time(...)) must be multiplied by the number of points on Grafana graph, since Prometheus executes the quantile_over_time(...) individually per each point on the displayed graph. Usually Grafana requests around 1000 points for building smooth graph. So the number returned from sum(count_over_time(...)) must be multiplied by 1000 in order to estimate the number of raw samples Prometheus needs to process for building the quantile_over_time(...) graph. See more details in this article.
There are the following solutions for reducing query duration:
To add more specific label filters in order to reduce the number of selected time series and, consequently, the number of raw samples to process.
To reduce the lookbehind window in square brackets. For example, changing [10d] to [1d] reduces the number of raw samples to process by 10x.
To use recording rules for calculating coarser-grained results.
To try using other Prometheus-compatible systems, which may process heavy queries at faster speed. Try, for example, VictoriaMetrics.

How should i interpret this grafana visualized prometheus histogram buckets heatmap?

I visualized prometheus histogram buckets as heatmap with grafana, below pic shows the query and the outcome graph, how should i interpret this?
According to my attacker, in total i sent 300 requests in that period exactly, but when i sum those numbers up on above graph i can never get exact 300,
and also looks those numbers are fluctuating with the time elapsing, how should i interpret this graph in a meaningful way?
And if i want those numbers to be the exact request counts locate in each of those bucket in that time window, what should i do?
Oh, for the X-Axis Mode i chose Series and the Value i chose Current.
There are real reasons why you can't always get a precise rate/increase value out of Prometheus. One of them is failed scrapes, i.e. every now and then a scrape will fail or time out due to a slow service, slow Prometheus or network issue.
The other reason is the fact that collected samples are never exactly scrape_interval apart: there will always be a few milliseconds or seconds of delay here and there. So (to take an extreme example) how can you tell the precise increase over the past 1 minute if you only have 2 samples 63 seconds apart? Is it the difference between the two values? Is it that difference adjusted to 60 seconds (i.e. / 63 * 60)?
That being said, Prometheus further boxes itself into a corner by only looking at samples falling strictly within the requested time range. To explain myself: how would a reasonable person calculate the increase of a counter over the last 30 minutes? They would likely take the value of said counter now and the value 30 minutes ago and subtract them. I.e. in PromQL terms (adjusting for counter resets where necessary):
request_duration_bucket - request_duration_bucket offset 30m
What Prometheus does instead (assuming a scrape_interval of 1m and an ideal timeseries with samples spaced exactly 1m apart) is essentially this:
(request_duration_bucket - request_duration_bucket offset 29m) / 29 * 30
I.e. it takes the increase over 29 minutes and extrapolates it to 30. Because of self-imposed limitations, nothing to do with the nature of the problem at hand.
Note that this works fine with counters that increase smoothly and continuously. E.g. if you have a counter that increases by 500 every minute, then taking the increase over 29 minutes and extrapolating to 30 is exactly correct. But for anything that increases in jumps and fits (which is most real-life counters) it will either slightly overestimate the increase if it occurs during the 29 minutes it actually samples (by exactly 1/29) or seriously underestimate it (if the increase occurs in the 1 minute not included in the sampling). This is even worse if you compute a rate/increase over a range covering fewer samples. E.g. if your range only covers 5 samples on average, the overestimate will be 20%, i.e. 1 / (5 - 1) and (each of) your increases will totally disappear 1 minute out of 5.
The only way I've found to work around this limitation is (again, assuming a scrape_interval of 1m) to reverse engineer Prometheus' extrapolation:
increase(request_duration_bucket[31m]) / 31 * 30
But this requires you to be aware of your scrape_interval and adjust for it and is very brittle (if you ever change your scrape_interval all your careful tweaking goes to hell).
Or, if you are OK with your increase falling to zero every time an instance is restarted:
clamp_min(request_duration_bucket - request_duration_bucket offset 30m, 0)
I do actually have a proposed patch to Prometheus to add xrate/xincrease functions that actually behave more as you would expect them to (and as described above) but it doesn't look very likely to be accepted: https://github.com/prometheus/prometheus/issues/3806

Grafana aggregation issue when changing time range (%CPU and more)

I have an % CPU usage grafana graph.
The problem is that the source data is collected by collectd as Jiffies.
I am using the following formula:
collectd|<ServerName>|cpu-*|cpu-idle|value|nonNegativeDerivative()|asPercent(-6000)|offset(100)
The problem is that when I increase the time range (to 30 days for example), the grafana is aggregating the data and since it is accumulative numbers (And not percentage or something it can make a simple average), the data in the graph is becoming invalid.
Any idea how to create a better formula?
Have you looked at the aggregation plugin (read type) to compute averages?
https://collectd.org/wiki/index.php/Plugin:Aggregation/Config
it is very strange that you have to use the nonNegativeDerivative function for a CPU metric. nonNegativeDerivative should only be used for ever increasing counters, not a gauge like metric like CPU