I have a aircraft data(longitude, latitude, altitude) and I plotted a aircraft data, which is a trajectory of aircraft.
First, I want to make cross sections at some point(first image).
And at the cross section, there are a lot of points, and I need to make a boundary.
The boundary is made using 'percentile'.
For example, if percentile is 100, the boundary will contain every point, but in my case, the percentile will be 97.5
When the boundary is made, I want to connect I the boundary's vertices to i+1 th boundary's vertices.
So, the result should be something like a tube. (second image)
Let me know what is wrong in my code.
for i = 1:length(Dep_33L)
x = Dep_33L(i).Longitude;
y = Dep_33L(i).Latitude;
z = Dep_33L(i).BAlt;
t = linspace(0, 1, 30);
% Set 'Y' Values For The Box Locations
scatter3(x,y,z,'.')
hold on
end
yv = linspace(min(y), max(y), 30);
for k = 1:length(yv)
for i = 1:length(Dep_33L)
x(i) = Dep_33L(i).Longitude(k);
z(i) = Dep_33L(i).BAlt(k);
end
xpctl = prctile(x,[2.5 97.5]);
zpctl = prctile(z,[2.5 97.5]);
xl(k,:) = xpctl;
zl(k,:) = zpctl;
patch([xpctl flip(xpctl)], [0 1 1 0]+yv(k), [[1 1]*zpctl(1) [1 1]*zpctl(2)], 'r', 'FaceAlpha',0.25)
end
plot3(xl(:,1), yv(:), zl(:,1), '-k', 'LineWidth',2)
plot3(xl(:,1), yv(:), zl(:,2), '-k', 'LineWidth',2)
plot3(xl(:,2), yv(:), zl(:,1), '-k', 'LineWidth',2)
plot3(xl(:,2), yv(:), zl(:,2), '-k', 'LineWidth',2)
Related
I'm trying to fill an area between two curves with respect to a function which depends on the values of the curves.
Here is the code of what I've managed to do so far
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
N=[n_vec,fliplr(n_vec)];
X=[x_vec,fliplr(y_vec)];
figure(1)
subplot(2,1,1)
hold on
plot(n_vec,x_vec,n_vec,y_vec)
hp = patch(N,X,'b')
plot([n_vec(i) n_vec(i)],[x_vec(i),y_vec(i)],'linewidth',5)
xlabel('n'); ylabel('x')
subplot(2,1,2)
xx = linspace(y_vec(i),x_vec(i),100);
plot(xx,cc(xx,y_vec(i),x_vec(i)))
xlabel('x'); ylabel('c(x)')
This code produces the following graph
The color code which I've added represent the color coding that each line (along the y axis at a point on the x axis) from the area between the two curves should be.
Overall, the entire area should be filled with a gradient color which depends on the values of the curves.
I've assisted the following previous questions but could not resolve a solution
MATLAB fill area between lines
Patch circle by a color gradient
Filling between two curves, according to a colormap given by a function MATLAB
NOTE: there is no importance to the functional form of the curves, I would prefer an answer which refers to two general arrays which consist the curves.
The surf plot method
The same as the scatter plot method, i.e. generate a point grid.
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px = linspace(min(n_vec), max(n_vec), resolution(1));
py = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px, py);
Generate a logical array indicating whether the points are inside the polygon, but no need to extract the points:
in = inpolygon(px, py, N, X);
Generate Z. The value of Z indicates the color to use for the surface plot. Hence, it is generated using the your function cc.
pz = 1./(1+(exp(-py_)/(exp(-y_vec(i))-exp(-x_vec(i)))));
pz = repmat(pz',1,resolution(2));
Set Z values for points outside the area of interest to NaN so MATLAB won't plot them.
pz(~in) = nan;
Generate a bounded colourmap (delete if you want to use full colour range)
% generate colormap
c = jet(100);
[s,l] = bounds(pz,'all');
s = round(s*100);
l = round(l*100);
if s ~= 0
c(1:s,:) = [];
end
if l ~= 100
c(l:100,:) = [];
end
Finally, plot.
figure;
colormap(jet)
surf(px,py,pz,'edgecolor','none');
view(2) % x-y view
Feel free to turn the image arround to see how it looks like in the Z-dimention - beautiful :)
Full code to test:
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
% generate grid
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px_ = linspace(min(n_vec), max(n_vec), resolution(1));
py_ = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px_, py_);
% extract points
in = inpolygon(px, py, N, X);
% generate z
pz = 1./(1+(exp(-py_)/(exp(-y_vec(i))-exp(-x_vec(i)))));
pz = repmat(pz',1,resolution(2));
pz(~in) = nan;
% generate colormap
c = jet(100);
[s,l] = bounds(pz,'all');
s = round(s*100);
l = round(l*100);
if s ~= 0
c(1:s,:) = [];
end
if l ~= 100
c(l:100,:) = [];
end
% plot
figure;
colormap(c)
surf(px,py,pz,'edgecolor','none');
view(2)
You can use imagesc and meshgrids. See comments in the code to understand what's going on.
Downsample your data
% your initial upper and lower boundaries
n_vec_long = linspace(2,10,1000000);
f_ub_vec_long = linspace(2, 10, length(n_vec_long));
f_lb_vec_long = abs(sin(n_vec_long));
% downsample
n_vec = linspace(n_vec_long(1), n_vec_long(end), 1000); % for example, only 1000 points
% get upper and lower boundary values for n_vec
f_ub_vec = interp1(n_vec_long, f_ub_vec_long, n_vec);
f_lb_vec = interp1(n_vec_long, f_lb_vec_long, n_vec);
% x_vec for the color function
x_vec = 0:0.01:10;
Plot the data
% create a 2D matrix with N and X position
[N, X] = meshgrid(n_vec, x_vec);
% evaluate the upper and lower boundary functions at n_vec
% can be any function at n you want (not tested for crossing boundaries though...)
f_ub_vec = linspace(2, 10, length(n_vec));
f_lb_vec = abs(sin(n_vec));
% make these row vectors into matrices, to create a boolean mask
F_UB = repmat(f_ub_vec, [size(N, 1) 1]);
F_LB = repmat(f_lb_vec, [size(N, 1) 1]);
% create a mask based on the upper and lower boundary functions
mask = true(size(N));
mask(X > F_UB | X < F_LB) = false;
% create data matrix
Z = NaN(size(N));
% create function that evaluates the color profile for each defined value
% in the vectors with the lower and upper bounds
zc = #(X, ub, lb) 1 ./ (1 + (exp(-X) ./ (exp(-ub) - exp(-lb))));
CData = zc(X, f_lb_vec, f_ub_vec); % create the c(x) at all X
% put the CData in Z, but only between the lower and upper bound.
Z(mask) = CData(mask);
% normalize Z along 1st dim
Z = normalize(Z, 1, 'range'); % get all values between 0 and 1 for colorbar
% draw a figure!
figure(1); clf;
ax = axes; % create some axes
sc = imagesc(ax, n_vec, x_vec, Z); % plot the data
ax.YDir = 'normal' % set the YDir to normal again, imagesc reverses it by default;
xlabel('n')
ylabel('x')
This already looks kinda like what you want, but let's get rid of the blue area outside the boundaries. This can be done by creating an 'alpha mask', i.e. set the alpha value for all pixels outside the previously defined mask to 0:
figure(2); clf;
ax = axes; % create some axes
hold on;
sc = imagesc(ax, n_vec, x_vec, Z); % plot the data
ax.YDir = 'normal' % set the YDir to normal again, imagesc reverses it by default;
% set a colormap
colormap(flip(hsv(100)))
% set alpha for points outside mask
Calpha = ones(size(N));
Calpha(~mask) = 0;
sc.AlphaData = Calpha;
% plot the other lines
plot(n_vec, f_ub_vec, 'k', n_vec, f_lb_vec, 'k' ,'linewidth', 1)
% set axis limits
xlim([min(n_vec), max(n_vec)])
ylim([min(x_vec), max(x_vec)])
there is no importance to the functional form of the curves, I would prefer an answer which refers to two general arrays which consist the curves.
It is difficult to achieve this using patch.
However, you may use scatter plots to "fill" the area with coloured dots. Alternatively, and probably better, use surf plot and generate z coordinates using your cc function (See my seperate solution).
The scatter plot method
First, make a grid of points (resolution 500*500) inside the rectangular space bounding the two curves.
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px = linspace(min(n_vec), max(n_vec), resolution(1));
py = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px, py);
figure;
scatter(px(:), py(:), 1, 'r');
The not-interesting figure of the point grid:
Next, extract the points inside the polygon defined by the two curves.
in = inpolygon(px, py, N, X);
px = px(in);
py = py(in);
hold on;
scatter(px, py, 1, 'k');
Black points are inside the area:
Finally, create color and plot the nice looking gradient colour figure.
% create color for the points
cid = 1./(1+(exp(-py)/(exp(-y_vec(i))-exp(-x_vec(i)))));
c = jet(101);
c = c(round(cid*100)+1,:); % +1 to avoid zero indexing
% plot
figure;
scatter(px,py,16,c,'filled','s'); % use size 16, filled square markers.
Note that you may need a fairly dense grid of points to make sure the white background won't show up. You may also change the point size to a bigger value (won't impact performance).
Of cause, you may use patch to replace scatter but you will need to work out the vertices and face ids, then you may patch each faces separately with patch('Faces',F,'Vertices',V). Using patch this way may impact performance.
Complete code to test:
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
% generate point grid
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px_ = linspace(min(n_vec), max(n_vec), resolution(1));
py_ = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px_, py_);
% extract points
in = inpolygon(px, py, N, X);
px = px(in);
py = py(in);
% generate color
cid = 1./(1+(exp(-py)/(exp(-y_vec(i))-exp(-x_vec(i)))));
c = jet(101);
c = c(round(cid*100)+1,:); % +1 to avoid zero indexing
% plot
figure;
scatter(px,py,16,c,'filled','s');
I need to extract the isoline coordinates of a 4D variable from a 3D surface defined using a triangulated mesh in MATLAB. I need the isoline coordinates to be a ordered in such a manner that if they were followed in order they would trace the path i.e. the order of the points a 3D printer would follow.
I have found a function that can calculate the coordinates of these isolines (see Isoline function here) but the problem is this function does not consider the isolines to be joined in the correct order and is instead a series of 2 points separated by a Nan value. This makes this function only suitable for visualisation purposes and not the path to follow.
Here is a MWE of the problem of a simplified problem, the surface I'm applying it too is much more complex and I cannot share it. Where x, y and z are nodes, with TRI providing the element connectivity list and v is the variable of which I want the isolines extracted from and is not equal to z.
If anyone has any idea on either.....
A function to extract isoline values in the correct order for a 3D tri mesh.
How to sort the data given by the function Isoline so that they are in the correct order.
.... it would be very much appreciated.
Here is the MWE,
% Create coordinates
[x y] = meshgrid( -10:0.5:10, -10:0.5:10 );
z = (x.^2 + y.^2)/20; % Z height
v = x+y; % 4th dimension value
% Reshape coordinates into list to be converted to tri mesh
x = reshape(x,[],1); y = reshape(y,[],1); z = reshape(z,[],1); v = reshape(v,[],1);
TRI = delaunay(x,y); % Convertion to a tri mesh
% This function calculates the isoline coordinates
[xTows, yTows, zTows] = IsoLine( {TRI,[x, y, z]}, v, -18:2:18);
% Plotting
figure(1); clf(1)
subplot(1,2,1)
trisurf(TRI,x,y,z,v)
hold on
for i = 1:size(xTows,1)
plot3( xTows{i,1}, yTows{i,1}, zTows{i,1}, '-k')
end
hold off
shading interp
xlabel('x'); ylabel('y'); zlabel('z'); title('Isolines'), axis equal
%% This section is solely to show that the isolines are not in order
for i = 1:size(xTows,1)
% Arranging data into colums and getting rid of Nans that appear
xb = xTows{i,1}; yb = yTows{i,1}; zb = zTows{i,1};
xb = reshape(xb, 3, [])'; xb(:,3) = [];
yb = reshape(yb, 3, [])'; yb(:,3) = [];
zb = reshape(zb, 3, [])'; zb(:,3) = [];
subplot(1,2,2)
trisurf(TRI,x,y,z,v)
shading interp
view(2)
xlabel('x'); ylabel('y'); zlabel('z'); title('Plotting Isolines in Order')
axis equal; axis tight; hold on
for i = 1:size(xb,1)
plot3( [xb(i,1) xb(i,2)], [yb(i,1) yb(i,2)], [zb(i,1) zb(i,2)], '-k')
drawnow
end
end
and here is the function Isoline, which I have slightly adpated.
function [xTows, yTows, zTows] = IsoLine(Surf,F,V,Col)
if length(Surf)==3 % convert mesh to triangulation
P = [Surf{1}(:) Surf{2}(:) Surf{3}(:)];
Surf{1}(end,:) = 1i;
Surf{1}(:,end) = 1i;
i = find(~imag(Surf{1}(:)));
n = size(Surf{1},1);
T = [i i+1 i+n; i+1 i+n+1 i+n];
else
T = Surf{1};
P = Surf{2};
end
f = F(T(:));
if nargin==2
V = linspace(min(f),max(f),22);
V = V(2:end-1);
elseif numel(V)==1
V = linspace(min(f),max(f),V+2);
V = V(2:end-1);
end
if nargin<4
Col = 'k';
end
H = NaN + V(:);
q = [1:3 1:3];
% -------------------------------------------------------------------------
% Loop over iso-values ----------------------------------------------------
xTows = [];
yTows = [];
zTows = [];
for k = 1:numel(V)
R = {[],[]};
G = F(T) - V(k);
C = 1./(1-G./G(:,[2 3 1]));
f = unique(T(~isfinite(C))); % remove degeneracies by random perturbation
F(f) = F(f).*(1+1e-12*rand(size(F(f)))) + 1e-12*rand(size(F(f)));
G = F(T) - V(k);
C = 1./(1-G./G(:,[2 3 1]));
C(C<0|C>1) = -1;
% process active triangles
for i = 1:3
f = any(C>=0,2) & C(:,i)<0;
for j = i+1:i+2
w = C(f,q([j j j]));
R{j-i} = [R{j-i}; w.*P(T(f,q(j)),:)+(1-w).*P(T(f,q(j+1)),:)];
end
end
% define isoline
for i = 1:3
X{i} = [R{1}(:,i) R{2}(:,i) nan+R{1}(:,i)]';
% X{i} = [R{1}(:,i) R{2}(:,i)]'; % Changed by Matt
X{i} = X{i}(:)';
end
% plot isoline
if ~isempty(R{1})
% hold on
% H(k) = plot3(X{1},X{2},X{3},Col);
% Added by M.Thomas
xTows{k,1} = X{1};
yTows{k,1} = X{2};
zTows{k,1} = X{3};
end
end
What you will notice is that the isolines (xTows, yTows and zTows) are not in order there "jump around" when plotted sequentially. I need to sort the tows so that they give a smooth plot in order.
I plotted a set of triangles using the code below:
A=[1, 1; 1, 5; 3, 9; 4, 2;9,9];
plot(A(:,1),A(:,2),'oc','LineWidth',2,'MarkerSize',5);
axis([0 10 0 10]);
grid on
for ii = 1:size(A, 1) - 1
for jj = ii + 1:size(A, 1)
line([A(ii, 1), A(jj, 1)], [A(ii, 2), A(jj, 2)])
end
end
The problem is, i will like the plot to indicate the region with the highest number of intersections. In this particular code, the region is the black polygon (i had to indicate this region manually).
Please can anyone help out with this problem. Thanks
Here is a variant with a more graphical approach.
Create a grid of points
Check the number of triangles that a point
is inside
Plot the points with highest number of intersecting
triangles
The code
% Create the combination of all points that make the triangles
% This could be used to plot the lines as well
N = size(A,1);
comb = [];
for i = 1:N-2
for j = i+1:N-1
comb = [comb; repmat([i j], N-j,1) (j+1:N)']; %#ok<AGROW>
end
end
nComb = size(comb,1);
% Create a mesh grid
dg = 0.1; % Resolution - tune this!
gridEdge = [min(A);max(A)];
[X, Y] = meshgrid(gridEdge(1,1):dg:gridEdge(2,1), gridEdge(1,2):dg:gridEdge(2,2));
% Check if a point is inside each triangle
[isInside, onEdge] = deal(zeros(numel(X),nComb));
for i = 1:nComb
[isInside(:,i), onEdge(:,i)] = inpolygon(X(:),Y(:),A(comb(i,:),1),A(comb(i,:),2));
end
% Remove points on edge
isInside = isInside - onEdge;
% Get index of points with most intersection
inTri = sum(isInside,2);
idx = find(inTri == max(inTri));
% Plot result
hold on
plot(X(idx),Y(idx),'.')
text(mean(X(idx)),mean(Y(:)),num2str(max(inTri)),'FontSize',20)
This is a continuation from the question already posted here. I used the method that #Andrey suggested. But there seems to be a limitation. the set(handle, 'XData', x) command seems to work as long as x is a vector. what if x is a matrix?
Let me explain with an example.
Say we want to draw 3 rectangles whose vertices are given by the matrices x_vals (5,3 matrix) and y_vals (5,3 matrix). The command that will be used to plot is simply plot(x,y).
Now, we want to update the above plot. This time we want to draw 4 rectangles. whose vertices are present in the matrices x_new(5,4 matrix) and y_new (5,4 matrix) that we obtain after some calculations. Now using the command set(handle, 'XData', x, 'YData', y) after updating x and y with new values results in an error that states
Error using set
Value must be a column or row vector
Any way to solve this problem?
function [] = visualizeXYZ_struct_v3(super_struct, start_frame, end_frame)
% create first instance
no_objs = length(super_struct(1).result);
x = zeros(1,3000);
y = zeros(1,3000);
box_x = zeros(5, no_objs);
box_y = zeros(5, no_objs);
fp = 1;
% cascade values across structures in a frame so it can be plot at once;
for i = 1:1:no_objs
XYZ = super_struct(1).result(i).point_xyz;
[r,~] = size(XYZ);
x(fp:fp+r-1) = XYZ(:,1);
y(fp:fp+r-1) = XYZ(:,2);
% z(fp:fp+r-1) = xyz):,3);
fp = fp + r;
c = super_struct(1).result(i).box;
box_x(:,i) = c(:,1);
box_y(:,i) = c(:,2);
end
x(fp:end) = [];
y(fp:end) = [];
fig = figure('position', [50 50 1280 720]);
hScatter = scatter(x,y,1);
hold all
hPlot = plot(box_x,box_y,'r');
axis([-10000, 10000, -10000, 10000])
xlabel('X axis');
ylabel('Y axis');
hold off
grid off
title('Filtered Frame');
tic
for num = start_frame:1:end_frame
no_objs = length(super_struct(num).result);
x = zeros(1,3000);
y = zeros(1,3000);
box_x = zeros(5, no_objs);
box_y = zeros(5, no_objs);
fp = 1;
% cascade values accross structures in a frame so it can be plot at once;
for i = 1:1:no_objs
XYZ = super_struct(num).result(i).point_xyz;
[r,~] = size(XYZ);
x(fp:fp+r-1) = XYZ(:,1);
y(fp:fp+r-1) = XYZ(:,2);
fp = fp + r;
c = super_struct(num).result(i).box;
box_x(:,i) = c(:,1);
box_y(:,i) = c(:,2);
end
x(fp:end) = [];
y(fp:end) = [];
set(hScatter, 'XData', x, 'YData', y);
set(hPlot, 'XData', box_x, 'YData', box_y); % This is where the error occurs
end
toc
end
Each line on the plot has its own XData and YData properties, and each can be set to a vector individually. See the reference. I am not at a Matlab console right now, but as I recall...
kidnum = 1
h_axis = gca % current axis - lines are children of the axis
kids = get(h_axis,'Children')
for kid = kids
kid_type = get(kid,'type')
if kid_type == 'line'
set(kid,'XData',x_new(:,kidnum))
set(kid,'YData',y_new(:,kidnum))
kidnum = kidnum+1
end
end
Hope that helps! See also the overall reference to graphics objects and properties.
To add a series, say
hold on % so each "plot" won't touch the lines that are already there
plot(x_new(:,end), y_new(:,end)) % or whatever parameters you want to plot
After that, the new series will be a child of h_axis and can be modified.
I'd like to draw a curve on an empty (semilog-y) graph by clicking the points I want it to run through, on the X-Y plane.
Is there a function for this?
edit: I'm trying to do this by obtaining the position of last pointer click -
axis([0 3000 0 1000]);
co=get(gcf, 'CurrentPoint');
It seems to return the cursor position at the time of execution, but it does not change later.
edit2: Here's what works for me. The actual drawing I can do by using the arrays of points collected.
clear
clc
h=plot(0);
grid on;
xlim([0 3000]);
ylim([0 1000]);
datacursormode on;
% Enlarge figure to full screen.
screenSize = get(0,'ScreenSize');
set(gcf, 'units','pixels','outerposition', screenSize);
hold on;
% Print the x,y coordinates - will be in plot coordinates
x=zeros(1,10); y=zeros(1,10);
for p=1:10;
[x(p),y(p)] = ginput(1) ;
% Mark where they clicked with a cross.
plot(x(p),y(p), 'r+', 'MarkerSize', 20, 'LineWidth', 3);
% Print coordinates on the plot.
label = sprintf('(%.1f, %.1f)', x(p), y(p));
text(x(p)+20, y(p), label);
end
Not really, but now there is:
function topLevel
%// parameters
xrange = [0 100];
yrange = [1e-4 1e4];
%// initialize figure, plot
figure, clf, hold on
plot(NaN, NaN);
axis([xrange yrange]);
set(gca, 'YScale', 'log')
t = text(sum(xrange)/2, sum(yrange)/2, ...
'<< Need at least 3 points >>',...
'HorizontalAlignment', 'center');
%// Main loop
xs = []; p = [];
ys = []; P = [];
while true
%// Get new user-input, and collect all of them in a list
[x,y] = ginput(1);
xs = [xs; x]; %#ok<AGROW>
ys = [ys; y]; %#ok<AGROW>
%// Plot the selected points
if ishandle(p)
delete(p); end
p = plot(xs, ys, 'rx');
axis([xrange yrange]);
%// Fit curve through user-injected points
if numel(xs) >= 3
if ishandle(t)
delete(t); end
%// Get parameters of best-fit in a least-squares sense
[A,B,C] = fitExponential(xs,ys);
%// Plot the new curve
xp = linspace(xrange(1), xrange(end), 100);
yp = A + B*exp(C*xp);
if ishandle(P)
delete(P); end
P = plot(xp,yp, 'b');
end
end
%// Fit a model of the form y = A + B·exp(C·x) to data [x,y]
function [A, B, C] = fitExponential(x,y)
options = optimset(...
'maxfunevals', inf);
A = fminsearch(#lsq, 0, options);
[~,B,C] = lsq(A);
function [val, B,C] = lsq(A)
params = [ones(size(x(:))) x(:)] \ log(abs(y-A));
B = exp(params(1));
C = params(2);
val = sum((y - A - B*exp(C*x)).^2);
end
end
end
Note that as always, fitting an exponential curve can be tricky; the square of the difference between model and data is exponentially much greater for higher data values than for lower data values, so there will be a strong bias to fit the higher values better than the lower ones.
I just assumed a simple model and used a simple solution, but this gives a biased curve which might not be "optimal" in the sense that you need it to be. Any decent solution really depends on what you want specifically, and I'll leave that up to you ^_^