I am Updating a Delta Table with some incremental records. Two of the fields require just a plain update, but there is another one which is a collection of maps which I would like to concatenate all the existing values instead of doing a update/replace
val historicalDF = Seq(
(1, 0, "Roger", Seq(Map("score" -> 5, "year" -> 2012)))
).toDF("id", "ts", "user", "scores")
historicalDF.write
.format("delta")
.mode("overwrite")
.save(table_path)
val hist_dt : DeltaTable = DeltaTable.forPath(spark, table_path)
val incrementalDF = Seq(
(1, 1, "Roger Rabbit", Seq(Map("score" -> 7, "year" -> 2013)))
).toDF("id", "ts", "user", "scores")
What I would like to have after the merge something is like this:
+---+---+------------+--------------------------------------------------------+
|id |ts |user |scores |
+---+---+------------+--------------------------------------------------------+
|1 |1 |Roger Rabbit|[{score -> 7, year -> 2013}, {score -> 7, year -> 2013}]|
+---+---+------------+--------------------------------------------------------+
What I tried to perform this concatenation is:
hist_dt
.as("ex")
.merge(incrementalDF.as("in"),
"ex.id = in.id")
.whenMatched
.updateExpr(
Map(
"ts" -> "in.ts",
"user" -> "in.user",
"scores" -> "in.scores" ++ "ex.scores"
)
)
.whenNotMatched
.insertAll()
.execute()
But the columns "in.scores" and "ex.scores" are interpreted as String, so I am getting the following error:
error: value ++ is not a member of (String, String)
If there a way to add some complex logic to updateExpr?
Using update() instead of updateExpr() let me pass the required columns to a udf, so I can add there a more complex logic
def join_seq_map(incremental: Seq[Map[String,Integer]], existing: Seq[Map[String,Integer]]) : Seq[Map[String,Integer]] = {
(incremental, existing) match {
case ( null , null) => null
case ( null, e ) => e
case ( i , null) => i
case ( i , e ) => (i ++ e).distinct
}
}
def join_seq_map_udf = udf(join_seq_map _)
hist_dt
.as("ex")
.merge(
incrementalDF.as("in"),
"ex.id = in.id")
.whenMatched("ex.ts < in.ts")
.update(Map(
"ts" -> col("in.ts"),
"user" -> col("in.user"),
"scores" -> join_seq_map_udf(col("in.scores"), col("ex.scores"))
))
.whenNotMatched
.insertAll()
.execute()
Related
I have this Seq[Map[String, String]] :
val val1 = Seq(
Map("Name" -> "Heidi",
"City" -> "Paris",
"Age" -> "23"),
Map(("Country" -> "France")),
Map("Color" -> "Blue",
"City" -> "Paris"))
and I have this Seq[String]
val val2 = Seq["Name", "Country", "City", "Department"]
Expected output is val1 with all keys present in val2 (I want to filter out the (k,v) from v1 that have keys that are not present in val2) :
val expected = Seq(Map("Name" -> "Heidi", "City" -> "Paris"), Map( "Country" -> "France")), Map("City" -> "Paris"))
Age and Color are strings that are not in val2, I want to omit them from val1 map.
I'm not sure if what you propose is a right approach but nevertheless, it can be done like this:
val1.map(_.filter {
case (key, value) => val2.contains(key)
})
It seems you want something like this:
(note that I used a Set instead of a List to make contains faster)
def ensureMapsHaveOnlyValidKeys[K, V](validKeys: Set[K])(data: IterableOnce[Map[K, V]]): List[Map[K, V]] =
data
.iterator
.filter(_.keysIterator.forall(validKeys.contains))
.toList
I have a List and has to create Map from this for further use, I am using RDD, but with use of collect(), job is failing in cluster. Any help is appreciated.
Please help. Below is the sample code from List to rdd.collect.
I have to use this Map data further but how to use without collect?
This code creates a Map from RDD (List) Data. List Format->(asdfg/1234/wert,asdf)
//List Data to create Map
val listData = methodToGetListData(ListData).toList
//Creating RDD from above List
val rdd = sparkContext.makeRDD(listData)
implicit val formats = Serialization.formats(NoTypeHints)
val res = rdd
.map(map => (getRPath(map._1), getAttribute(map._1), map._2))
.groupBy(_._1)
.map(tuple => {
Map(
"P_Id" -> "1234",
"R_Time" -> "27-04-2020",
"S_Time" -> "27-04-2020",
"r_path" -> tuple._1,
"S_Tag" -> "12345,
tuple._1 -> (tuple._2.map(a => (a._2, a._3)).toMap)
)
})
res.collect()
}
Q: how to use without collect?
Answer : collect will hit.. it will move the data to driver node. if data is
huge. Never do that.
I dont exactly know what is the use case to prepare a map but it can be achievable using built in spark API i.e.collectionAccumulator ... in detail,
collectionAccumulator[scala.collection.mutable.Map[String, String]]
Lets suppose, this is your sample dataframe and you want to make a map.
+-------+---------+---------------------+-------------+----------+------------+-------------+-----------+------------+----------+---------+-------------------------------+
|Item_Id|Parent_Id|object_class_instance|Received_Time|CablesName|CablesStatus|CablesHInfoID|CablesIndex|object_class|ServiceTag|Scan_Time|relation_tree |
+-------+---------+---------------------+-------------+----------+------------+-------------+-----------+------------+----------+---------+-------------------------------+
|-0909 |1234 |Cables-1 |23-12-2020 |LC |Installed |ABCD1234 |0 |Cables |ASDF123 |12345 |Start~>HInfo->Cables->Cables-1 |
|-09091 |1234111 |Cables-11 |23-12-2022 |LC1 |Installed1 |ABCD12341 |0 |Cables1 |ASDF1231 |123451 |Start~>HInfo->Cables->Cables-11|
+-------+---------+---------------------+-------------+----------+------------+-------------+-----------+------------+----------+---------+-------------------------------+
From this you want to make a map (nested map I prefixed with nestedmap key name in your example) then...
Below is the full example have a look and modify accordingly.
package examples
import org.apache.log4j.Level
object GrabMapbetweenClosure extends App {
val logger = org.apache.log4j.Logger.getLogger("org")
logger.setLevel(Level.WARN)
import org.apache.spark.sql.SparkSession
val spark = SparkSession
.builder()
.master("local[*]")
.appName(this.getClass.getName)
.getOrCreate()
import spark.implicits._
var mutableMapAcc = spark.sparkContext.collectionAccumulator[scala.collection.mutable.Map[String, String]]("mutableMap")
val df = Seq(
("-0909", "1234", "Cables-1", "23-12-2020", "LC", "Installed", "ABCD1234"
, "0", "Cables", "ASDF123", "12345", "Start~>HInfo->Cables->Cables-1")
, ("-09091", "1234111", "Cables-11", "23-12-2022", "LC1", "Installed1", "ABCD12341"
, "0", "Cables1", "ASDF1231", "123451", "Start~>HInfo->Cables->Cables-11")
).toDF("Item_Id", "Parent_Id", "object_class_instance", "Received_Time", "CablesName", "CablesStatus", "CablesHInfoID",
"CablesIndex", "object_class", "ServiceTag", "Scan_Time", "relation_tree"
)
df.show(false)
df.foreachPartition { partition => // for performance sake I used foreachPartition
partition.foreach {
record => {
mutableMapAcc.add(scala.collection.mutable.Map(
"Item_Id" -> record.getAs[String]("Item_Id")
, "CablesStatus" -> record.getAs[String]("CablesStatus")
, "CablesHInfoID" -> record.getAs[String]("CablesHInfoID")
, "Parent_Id" -> record.getAs[String]("Parent_Id")
, "CablesIndex" -> record.getAs[String]("CablesIndex")
, "object_class_instance" -> record.getAs[String]("object_class_instance")
, "Received_Time" -> record.getAs[String]("Received_Time")
, "object_class" -> record.getAs[String]("object_class")
, "CablesName" -> record.getAs[String]("CablesName")
, "ServiceTag" -> record.getAs[String]("ServiceTag")
, "Scan_Time" -> record.getAs[String]("Scan_Time")
, "relation_tree" -> record.getAs[String]("relation_tree")
)
)
}
}
}
println("FinalMap : " + mutableMapAcc.value.toString)
}
Result :
+-------+---------+---------------------+-------------+----------+------------+-------------+-----------+------------+----------+---------+-------------------------------+
|Item_Id|Parent_Id|object_class_instance|Received_Time|CablesName|CablesStatus|CablesHInfoID|CablesIndex|object_class|ServiceTag|Scan_Time|relation_tree |
+-------+---------+---------------------+-------------+----------+------------+-------------+-----------+------------+----------+---------+-------------------------------+
|-0909 |1234 |Cables-1 |23-12-2020 |LC |Installed |ABCD1234 |0 |Cables |ASDF123 |12345 |Start~>HInfo->Cables->Cables-1 |
|-09091 |1234111 |Cables-11 |23-12-2022 |LC1 |Installed1 |ABCD12341 |0 |Cables1 |ASDF1231 |123451 |Start~>HInfo->Cables->Cables-11|
+-------+---------+---------------------+-------------+----------+------------+-------------+-----------+------------+----------+---------+-------------------------------+
FinalMap : [Map(Scan_Time -> 123451, ServiceTag -> ASDF1231, Received_Time -> 23-12-2022, object_class_instance -> Cables-11, CablesHInfoID -> ABCD12341, Parent_Id -> 1234111, Item_Id -> -09091, CablesIndex -> 0, object_class -> Cables1, relation_tree -> Start~>HInfo->Cables->Cables-11, CablesName -> LC1, CablesStatus -> Installed1), Map(Scan_Time -> 12345, ServiceTag -> ASDF123, Received_Time -> 23-12-2020, object_class_instance -> Cables-1, CablesHInfoID -> ABCD1234, Parent_Id -> 1234, Item_Id -> -0909, CablesIndex -> 0, object_class -> Cables, relation_tree -> Start~>HInfo->Cables->Cables-1, CablesName -> LC, CablesStatus -> Installed)]
Similar problem was solved here.
I have multiple Map[String, String] in a List (Scala). For example:
map1 = Map("EMP_NAME" -> “Ahmad”, "DOB" -> “01-10-1991”, "CITY" -> “Dubai”)
map2 = Map("EMP_NAME" -> “Rahul”, "DOB" -> “06-12-1991”, "CITY" -> “Mumbai”)
map3 = Map("EMP_NAME" -> “John”, "DOB" -> “11-04-1996”, "CITY" -> “Toronto”)
list = List(map1, map2, map3)
Now I want to create a single dataframe with something like this:
EMP_NAME DOB CITY
Ahmad 01-10-1991 Dubai
Rahul 06-12-1991 Mumbai
John 11-04-1996 Toronto
How do I achieve this?
you can do it like this :
import spark.implicits._
val df = list
.map( m => (m.get("EMP_NAME"),m.get("DOB"),m.get("CITY")))
.toDF("EMP_NAME","DOB","CITY")
df.show()
+--------+----------+-------+
|EMP_NAME| DOB| CITY|
+--------+----------+-------+
| Ahmad|01-10-1991| Dubai|
| Rahul|06-12-1991| Mumbai|
| John|11-04-1996|Toronto|
+--------+----------+-------+
Slightly less specific approach, e.g:
val map1 = Map("EMP_NAME" -> "Ahmad", "DOB" -> "01-10-1991", "CITY" -> "Dubai")
val map2 = Map("EMP_NAME" -> "John", "DOB" -> "01-10-1992", "CITY" -> "Mumbai")
///...
val list = List(map1, map2) // map3, ...
val RDDmap = sc.parallelize(list)
// Get cols dynamically
val cols = RDDmap.take(1).flatMap(x=> x.keys)
// Map is K,V like per Map entry
val df = RDDmap.map{ value=>
val list=value.values.toList
(list(0), list(1), list(2))
}.toDF(cols:_*) // dynamic column names assigned
df.show(false)
returns:
+--------+----------+------+
|EMP_NAME|DOB |CITY |
+--------+----------+------+
|Ahmad |01-10-1991|Dubai |
|John |01-10-1992|Mumbai|
+--------+----------+------+
or to answer your sub-question, here as follows - at least I think this is what you are asking, but probably not:
val RDDmap = sc.parallelize(List(
Map("EMP_NAME" -> "Ahmad", "DOB" -> "01-10-1991", "CITY" -> "Dubai"),
Map("EMP_NAME" -> "John", "DOB" -> "01-10-1992", "CITY" -> "Mumbai")))
...
// Get cols dynamically
val cols = RDDmap.take(1).flatMap(x=> x.keys)
// Map is K,V like per Map entry
val df = RDDmap.map{ value=>
val list=value.values.toList
(list(0), list(1), list(2))
}.toDF(cols:_*) // dynamic column names assigned
You can build a list dynamically of course, but you still need to assign the Map elements. See Appending Data to List or any other collection Dynamically in scala. I would just read in from file and be done with it.
import org.apache.spark.SparkContext
import org.apache.spark.sql._
import org.apache.spark.sql.types.{StringType, StructField, StructType}
object DataFrameTest2 extends Serializable {
var sparkSession: SparkSession = _
var sparkContext: SparkContext = _
var sqlContext: SQLContext = _
def main(args: Array[String]): Unit = {
sparkSession = SparkSession.builder().appName("TestMaster").master("local").getOrCreate()
sparkContext = sparkSession.sparkContext
val sqlContext = new org.apache.spark.sql.SQLContext(sparkContext)
val map1 = Map("EMP_NAME" -> "Ahmad", "DOB" -> "01-10-1991", "CITY" -> "Dubai")
val map2 = Map("EMP_NAME" -> "Rahul", "DOB" -> "06-12-1991", "CITY" -> "Mumbai")
val map3 = Map("EMP_NAME" -> "John", "DOB" -> "11-04-1996", "CITY" -> "Toronto")
val list = List(map1, map2, map3)
//create your rows
val rows = list.map(m => Row(m.values.toSeq:_*))
//create the schema from the header
val header = list.head.keys.toList
val schema = StructType(header.map(fieldName => StructField(fieldName, StringType, true)))
//create your rdd
val rdd = sparkContext.parallelize(rows)
//create your dataframe using rdd
val df = sparkSession.createDataFrame(rdd, schema)
df.show()
}
}
I am writing below code,
val maplist=List(Map("id" -> "1", "Name" -> "divya"),
Map("id" -> "2", "Name" -> "gaya")
)
val header=maplist.flatMap(_.keys).distinct
val data=maplist.flatMap(_.values)
println(header)
println(data)
I am getting the below output,
List(id, Name)
List(1, divya, 2, gaya)
however I am expecting output as below,
id Name
1 Divya
2 gaya
here in this case I am having only 2 header but in my map it may contain more than 2 headers how to display all in rows. Please help me.
val maplist=List(Map("id" -> "1", "Name" -> "divya"),
Map("id" -> "2", "Name" -> "gaya")
)
val header=maplist.flatMap(_.keys).distinct
val data=maplist.map(_.values)
println(header.mkString(" "))
data.foreach(x => println(x.mkString(" ")))
I have a Map which contains another Map in its value field. Here is an example of some records ;
(8702168053422489,Map(sequence -> 5, id -> 8702168053422489, type -> List(AppExperience, Session), time -> 527780267713))
(8702170626376335,Map(trackingInfo -> Map(trackId -> 14183197, location -> Browse, listId -> 3393626f-98e3-4973-8d38-6b2fb17454b5_27331247X28X6839X1506087469573, videoId -> 80161702, rank -> 0, row -> 1, imageKey -> boxshot|AD_e01f4a50-7e2b-11e7-a327-12789459b73e|en, requestId -> 662d92c2-6a1c-41a6-8ac4-bf2ae9f1ce68-417037), id -> 8702170626376335, sequence -> 59, time -> 527780275219, type -> List(NavigationLevel, Session), view -> details))
(8702168347359313,Map(muting -> false, id -> 8702168347359313, level -> 1, type -> List(Volume)))
(8702168321522401,Map(utcOffset -> 3600, type -> List(TimeZone), id -> 8702168321522401))
(8702171157207449,Map(trackingInfo -> Map(trackId -> 14183197, location -> Browse, listId -> 3393626f-98e3-4973-8d38-6b2fb17454b5_27331247X28X6839X1506087469573, videoId -> 80161356, rank -> 0, row -> 1, imageKey -> boxshot|AD_e01f4a50-7e2b-11e7-a327-12789459b73e|en, requestId -> 662d92c2-6a1c-41a6-8ac4-bf2ae9f1ce68-417037), id -> 8702171157207449, sequence -> 72, startOffset -> 0, time -> 527780278061, type -> List(StartPlay, Action, Session)))
The actual records I've interested in are the ones that contain trackingInfo, records 2 and 5.
What I would like to do is extract those and then extract some of the keys from there such as trackId. Something like this;
val trackingInfo = json("trackingInfo").asInstanceOf[Map[String, Any]]
val videoId = trackingInfo("videoId").asInstanceOf[Int]
val id = json("id").asInstanceOf[Long]
val sequence = json("sequence").asInstanceOf[Int]
val time = json("time").asInstanceOf[Long]
val eventType = json.get("type").getOrElse(List("")).asInstanceOf[List[String]]
To the extract the inner map, I've tired;
myMap.map {case (k,v: collection.Map[_,_]) => v.toMap case _ => }
Which brings back the inner map but as a scala.collection.immutable.Iterable[Any] which leaves me in a puzzle on extracting values from it.
Any help is appreciated
Let's say you have a real map (I cut it a little bit)
val data: Map[ BigInt, Any ] = Map(
BigInt( 8702168053422489L ) -> Map("sequence" -> "5", "id" -> BigInt( 8702168053422489L ) ),
BigInt( 8702170626376335L ) -> Map("trackingInfo" -> Map("trackId" -> BigInt( 14183197 ), "location" -> "Browse" ), "id" -> BigInt( 8702170626376335L ) ),
BigInt( 8702168347359313L ) -> Map("id" -> BigInt( 8702168347359313L ) ),
BigInt( 8702168321522401L ) -> Map("id" -> BigInt( 8702168321522401L ) ),
BigInt( 8702171157207449L ) -> Map("trackingInfo" -> Map("trackId" -> BigInt( 14183197 ), "location" -> "Browse" ), "id" -> BigInt( 8702171157207449L ) )
)
And you want to get records which have a trackingInfo key
val onlyWithTracking = data.filter( ( row ) => {
val recordToFilter = row._2 match {
case trackRecord: Map[ String, Any ] => trackRecord
case _ => Map( "trackId" -> Map() )
}
recordToFilter.contains( "trackingInfo" )
} )
And then process those records in some way
onlyWithTracking.foreach( ( row ) => {
val record = row._2 match {
case trackRecord: Map[ String, Any ] => trackRecord
case _ => Map( "trackingInfo" -> Map() )
}
val trackingInfo = record( "trackingInfo" ) match {
case trackRow: Map[ String, Any ] => trackRow
case _ => Map( "trackId" -> "error" )
}
val trackId = trackingInfo( "trackId" )
println( trackId )
} )
With this pattern matching I'm trying to ensure that using keys like trackingInfo or trackId is somewhat safe. You should implement more strict approach.