Align two 3D datasets - matlab

I am working on a problem where I am trying to align two datasets.
The issue is that the data order is not known. Below is a sample code where I am trying to align data1 and data3.
The second issue is when the number of points in both the datasets are not equal.
Any suggestions? Thanks.
rng(11);
N = 10 %10 points
data1 = randn(10,3); %10 coordinates
order = randperm(N)
data2 = data1(order,:); %Reordered data
%Rotation matrix and translation vector
rotM = [0.5771 0.1728 0.7982;
-0.4940 0.8521 0.1728;
-0.6503 -0.4940 0.5771]
TT = [1 2 3];
data3 = data2*rotM + TT;
Edit: Align = rotate and transform data3 to recover rotM and T.

What you are trying to do is a point cloud registration. And PC registration cares little about the order of points.
Assuming you are using Matlab, you could check the below website for the Matlab ICP algorithm. https://www.mathworks.com/help/vision/ref/pcregistericp.html
And
rotM = tform.R;
TT = tform.Translation ;

Related

FInd the intersect between timestamps in Matlab

I want to find the intersect between 2 time vectors t1 and t5 which have some gaps marked by the stars as in the figure. Because intersect function in matlab just find exactly value so I have to use ismembertol. My result is the middle line, which is missing the gap information in the t5 vector. How can I achieve this? This is my code:
`
tol = 1e-08; Fs = 50;
[a,b] = ismembertol(t1,t5,tol);
tcom15 = t1(a);
t1gap = t1(find(round(diff(t1)* 86400*Fs)>1));
t5gap = t5(find(round(diff(t5)* 86400*Fs)>1));
tcom15gap = tcom15(find(round(diff(tcom15)* 86400*Fs)>1));
figure; plot(t1,2*ones(length(t1),1)); hold on
plot(t5,3*ones(length(t5),1));ylim([1 4])
plot(t1gap,2*ones(length(t1gap),1),':*','MarkerSize',5)
plot(t5gap,3*ones(length(t5gap),1),':*','MarkerSize',10)
plot(tcom15,2.5*ones(length(tcom15),1))
plot(tcom15gap,2.5*ones(length(tcom15gap),1),':*','MarkerSize',10)

Reverse-calculating original data from a known moving average

I'm trying to estimate the (unknown) original datapoints that went into calculating a (known) moving average. However, I do know some of the original datapoints, and I'm not sure how to use that information.
I am using the method given in the answers here: https://stats.stackexchange.com/questions/67907/extract-data-points-from-moving-average, but in MATLAB (my code below). This method works quite well for large numbers of data points (>1000), but less well with fewer data points, as you'd expect.
window = 3;
datapoints = 150;
data = 3*rand(1,datapoints)+50;
moving_averages = [];
for i = window:size(data,2)
moving_averages(i) = mean(data(i+1-window:i));
end
length = size(moving_averages,2)+(window-1);
a = (tril(ones(length,length),window-1) - tril(ones(length,length),-1))/window;
a = a(1:length-(window-1),:);
ai = pinv(a);
daily = mtimes(ai,moving_averages');
x = 1:size(data,2);
figure(1)
hold on
plot(x,data,'Color','b');
plot(x(window:end),moving_averages(window:end),'Linewidth',2,'Color','r');
plot(x,daily(window:end),'Color','g');
hold off
axis([0 size(x,2) min(daily(window:end))-1 max(daily(window:end))+1])
legend('original data','moving average','back-calculated')
Now, say I know a smattering of the original data points. I'm having trouble figuring how might I use that information to more accurately calculate the rest. Thank you for any assistance.
You should be able to calculate the original data exactly if you at any time can exactly determine one window's worth of data, i.e. in this case n-1 samples in a window of length n. (In your case) if you know A,B and (A+B+C)/3, you can solve now and know C. Now when you have (B+C+D)/3 (your moving average) you can exactly solve for D. Rinse and repeat. This logic works going backwards too.
Here is an example with the same idea:
% the actual vector of values
a = cumsum(rand(150,1) - 0.5);
% compute moving average
win = 3; % sliding window length
idx = hankel(1:win, win:numel(a));
m = mean(a(idx));
% coefficient matrix: m(i) = sum(a(i:i+win-1))/win
A = repmat([ones(1,win) zeros(1,numel(a)-win)], numel(a)-win+1, 1);
for i=2:size(A,1)
A(i,:) = circshift(A(i-1,:), [0 1]);
end
A = A / win;
% solve linear system
%x = A \ m(:);
x = pinv(A) * m(:);
% plot and compare
subplot(211), plot(1:numel(a),a, 1:numel(m),m)
legend({'original','moving average'})
title(sprintf('length = %d, window = %d',numel(a),win))
subplot(212), plot(1:numel(a),a, 1:numel(a),x)
legend({'original','reconstructed'})
title(sprintf('error = %f',norm(x(:)-a(:))))
You can see the reconstruction error is very small, even using the data sizes in your example (150 samples with a 3-samples moving average).

Plot portfolio composition map in Julia (or Matlab)

I am optimizing portfolio of N stocks over M levels of expected return. So after doing this I get the time series of weights (i.e. a N x M matrix where where each row is a combination of stock weights for a particular level of expected return). Weights add up to 1.
Now I want to plot something called portfolio composition map (right plot on the picture), which is a plot of these stock weights over all levels of expected return, each with a distinct color and length (at every level of return) is proportional to it's weight.
My questions is how to do this in Julia (or MATLAB)?
I came across this and the accepted solution seemed so complex. Here's how I would do it:
using Plots
#userplot PortfolioComposition
#recipe function f(pc::PortfolioComposition)
weights, returns = pc.args
weights = cumsum(weights,dims=2)
seriestype := :shape
for c=1:size(weights,2)
sx = vcat(weights[:,c], c==1 ? zeros(length(returns)) : reverse(weights[:,c-1]))
sy = vcat(returns, reverse(returns))
#series Shape(sx, sy)
end
end
# fake data
tickers = ["IBM", "Google", "Apple", "Intel"]
N = 10
D = length(tickers)
weights = rand(N,D)
weights ./= sum(weights, dims=2)
returns = sort!((1:N) + D*randn(N))
# plot it
portfoliocomposition(weights, returns, labels = tickers)
matplotlib has a pretty powerful polygon plotting capability, e.g. this link on plotting filled polygons:
ploting filled polygons in python
You can use this from Julia via the excellent PyPlot.jl package.
Note that the syntax for certain things changes; see the PyPlot.jl README and e.g. this set of examples.
You "just" need to calculate the coordinates from your matrix and build up a set of polygons to plot the portfolio composition graph. It would be nice to see the code if you get this working!
So I was able to draw it, and here's my code:
using PyPlot
using PyCall
#pyimport matplotlib.patches as patch
N = 10
D = 4
weights = Array(Float64, N,D)
for i in 1:N
w = rand(D)
w = w/sum(w)
weights[i,:] = w
end
weights = [zeros(Float64, N) weights]
weights = cumsum(weights,2)
returns = sort!([linspace(1,N, N);] + D*randn(N))
##########
# Plot #
##########
polygons = Array(PyObject, 4)
colors = ["red","blue","green","cyan"]
labels = ["IBM", "Google", "Apple", "Intel"]
fig, ax = subplots()
fig[:set_size_inches](5, 7)
title("Problem 2.5 part 2")
xlabel("Weights")
ylabel("Return (%)")
ax[:set_autoscale_on](false)
ax[:axis]([0,1,minimum(returns),maximum(returns)])
for i in 1:(size(weights,2)-1)
xy=[weights[:,i] returns;
reverse(weights[:,(i+1)]) reverse(returns)]
polygons[i] = matplotlib[:patches][:Polygon](xy, true, color=colors[i], label = labels[i])
ax[:add_artist](polygons[i])
end
legend(polygons, labels, bbox_to_anchor=(1.02, 1), loc=2, borderaxespad=0)
show()
# savefig("CompositionMap.png",bbox_inches="tight")
Can't say that this is the best way, to do this, but at least it is working.

Matlab - How to improve efficiency of two port matrix calculations?

I'm looking for a way to speed up some simple two port matrix calculations. See the below code example for what I'm doing currently. In essence, I create a [Nx1] frequency vector first. I then loop through the frequency vector and create the [2x2] matrices H1 and H2 (all functions of f). A bit of simple matrix math including a matrix left division '\' later, and I got my result pb as a [Nx1] vector. The problem is the loop - it takes a long time to calculate and I'm looking for way to improve efficiency of the calculations. I tried assembling the problem using [2x2xN] transfer matrices, but the mtimes operation cannot handle 3-D multiplications.
Can anybody please give me an idea how I can approach such a calculation without the need for looping through f?
Many thanks: svenr
% calculate frequency and wave number vector
f = linspace(20,200,400);
w = 2.*pi.*f;
% calculation for each frequency w
for i=1:length(w)
H1(i,1) = {[1, rho*c*k(i)^2 / (crad*pi); 0,1]};
H2(i,1) = {[1, 1i.*w(i).*mp; 0, 1]};
HZin(i,1) = {H1{i,1}*H2{i,1}};
temp_mat = HZin{i,1}*[1; 0];
Zin(i,1) = temp_mat(1,1)/temp_mat(2,1);
temp_mat= H1{i,1}\[1; 1/Zin(i,1)];
pb(i,1) = temp_mat(1,1); Ub(i,:) = temp_mat(2,1);
end
Assuming that length(w) == length(k) returns true , rho , c, crad, mp are all scalars and in the last line is Ub(i,1) = temp_mat(2,1) instead of Ub(i,:) = temp_mat(2,1);
temp = repmat(eyes(2),[1 1 length(w)]);
temp1(1,2,:) = rho*c*(k.^2)/crad/pi;
temp2(1,2,:) = (1i.*w)*mp;
H1 = permute(num2cell(temp1,[1 2]),[3 2 1]);
H2 = permute(num2cell(temp2,[1 2]),[3 2 1]);
HZin = cellfun(#(a,b)(a*b),H1,H2,'UniformOutput',0);
temp_cell = cellfun(#(a,b)(a*b),H1,repmat({[1;0]},length(w),1),'UniformOutput',0);
Zin_cell = cellfun(#(a)(a(1,1)/a(2,1)),temp_cell,'UniformOutput',0);
Zin = cell2mat(Zin);
temp2_cell = cellfun(#(a)({[1;1/a]}),Zin_cell,'UniformOutput',0);
temp3_cell = cellfun(#(a,b)(pinv(a)*b),H1,temp2_cell);
temp4 = cell2mat(temp3_cell);
p(:,1) = temp4(1:2:end-1);
Ub(:,1) = temp4(2:2:end);

correlation coefficient data driven approach possible?

I have a matrix 64x64x32x90 which stands for pixels at x,y,z, at time t.
I have a reference signal 1x90 which stands for the behavior I expect for a pixel at some point (x,y,z).
I am constructing a new image of the correlation between each pixel versus my reference.
load('DATA.mat');
ON = ones(1,10);
OFF = zeros(1,10);
taskRef = [OFF ON OFF ON OFF ON OFF ON OFF];
corrImage = zeros(64,64,36);
for i=1:64,
for j=1:63,
for k=1:36
signal = squeeze(DATA(i,j,k,:));
coef = corrcoef(signal',taskRef);
corrImage(i,j,k) = coef(2);
end
end
end
My process is too slow. Is there a way to get rid of my loops or adjust the code to have a better runtime?
Reshape your data so that its first three dimensions are collapsed into one (so now there are 64*64*32 rows and 90 columns).
Then use pdist2 (with 'correlation' option) to compute the correlation of each row with the expected pattern.
Finally, reshape result into the desired shape.
DATA2 = reshape(DATA, [],90);
corrImage = 1 - pdist2(DATA2, taskRef, 'correlation');
corrImage = reshape(corrImage, 64,64,32);