Flutter file write takes too long - flutter

I'm trying to write an application that tries to provide an offline capability for a vast number of records (above 20m).
I've tried to do it using sqflite and tests show that it's not feasible since it either takes very long to write (if the index are predefined) or takes too long to index (after the inserts)
So I've decided to use the file system and since I'm only going to query with an id, use the file name as id and try to find the record.
but this time, the main problem is, file write operation takes very very long. I'm using File(filePath).writeAsString API and for 50 to 120 char strings, it sometimes takes more than 100ms.
I'm trying to utilize the isolations for better performance but it still does not help very much.
Is there a better approach or an file manipulation API available for this kind of an operation.

Related

How to do quickly search with multiple string in postgreSQL in case of very large database?

I try to build a data search system with around 9 million data for my supershop project.
So I need to search with multiple strings like product code, name, type etc. But when I search it took too much time to fetch data, also when I run the SQL it took more than two minutes to show the data.
Suggest me some way that I can reduce the execution time.

Why is saving data from an API to CSV faster than uploading it to MongoDB database

My question revolves around understanding the following two procedures (particularly performance and code logic) that I used to collect trade data from the US Census Bureau API. I already collected the data but I ended up writing two different ways of requesting and saving the data for which my questions pertain to.
Summary of my final questions comes at the bottom.
First way: npm request and mongodb to save the data
I limited my procedure using tiny-async-pool (sets concurrency of a certain function to perform) to not try to request too much at once or receive a timeout or overload my database with queries. Simply put, the bottleneck I was facing was the database since the API requests returned rather quickly (depending on body size 1-15 secs), but to save each array item (return data was nested array, sometimes from a few hundred items to over one hundred thousand items with max 10 values in each array) to its own mongodb document ranged from 100 ms to 700 ms. To save time from potential errors and not redoing the same queries, I also performed a check in my database before making the query to see if the query was already complete. The end result was that I did not follow this method since it was very error prone and susceptible to timeouts if the data was very large (I even set the timeout to 10 minutes in request options).
Second way: npm request and save data to csv
I used the same approach as the first method for the requests and concurrency, however I saved each query to its own csv file. In case of errors and not redoing successful queries I also did a check to see if the file already existed and if so skipped that query. This approach was error free, I ran it and after a few hours was able to have all the data saved. To write to csv was insanely fast, much more so than using mongodb.
Final summary and questions
My end goal was to get the data in the easiest manner possible. I used javascript because that's where I learned api requests and async operations, even though I will do most of my data analysis with python and pandas. I first tried the database method mostly because I thought it was the right way and I wanted to improve my database CRUD skills. After countless hours of refactoring code and trying new techniques I still could not get it to work properly. I resorted to the csv method which was a) much less code to write, b) less checks, c) faster, and d) more reliable.
My final questions are these:
Why was the csv approach better than the database approach? Any counter arguments or different approaches you would have used?
How do you handle bottlenecks and concurrency in your applications with regards to APIs and database operations? Do your techniques vary in production environments from personal use cases (in my case I just needed the data and a few hours of waiting was fine)?
Would you have used a different programming language or different package/module for this data collection procedure?

How to create a quick seach-as-you-type mechanism for a very large Core Data database?

I am trying to implement a quick search as-you-type mechanism.
In my current implementation, when the user launches the app for the first time, he has to wait a little bit for a downloading process to complete. During that time, information about the 20,000 products that the app sells is being downloaded. Each product is represented by an instance of NSManagedObject and is added to a Core Data database.
The real problem is the way to use those products. After the user launches the app once again (not the first time), the products need to be loaded to memory so the search would be quick.
In order to do that, I loop over the entire database and create an instance of NSDictionary for each product that contains its information, because it is much easier to use dictionary objects in my program to retrieve information about the product.
Because the dictionaries are stored in the memory and therefore the search process is very quick, but iterating over the 20,000 objects (onces per launch) and creating dictionaries takes a lot of time (about a minute), so that solution is not good.
I thought about another way to reach the quick-search goal: Fetching objects from the database after each letter has been typed. But I do not know how fast it would be.
What is the recommended way to do that?
Thanks,
Sagiftw
I have a similar feature in my app but have considerable less records. I have indices on all search fields and create as simple (inexpensive) sql querys (NSPredicate)as possible from the input (2nd fetchedResultsController only for searching). The result set contains the 'search items'. This is at least fast enough for around 1000 entries (test data size) with a random distribution of text type search keys. Its possible a good idea to fetch in the background to prevent the gui from being unresponsive.

How should I implement "get objects changed since" pattern with MongoDB?

I have a collection of objects, let's say they are "posts," and those objects can be modified. I'd like to display a list on the client side that updates dynamically. So on the client side, if doing this via polling, the client would invoke an API like:
getPostsChangedSince(serial)
where serial could be a monotonically increasing number, probably a timestamp. The client gets back a list of posts that have changed since that time, stores a new latest-serial, and next time the client polls it requests changes since that latest serial.
I think the basic idea is the same in this question (which is about ASP.NET): How to implement "get latests changed items" with ADO.NET Data Services?
I'm trying to find the best way to implement this in MongoDB.
I like the idea of using the time for the serial, since it automatically works at least mostly correctly even if there are multiple app servers. The serial would be stored in each post object, and updated whenever the object is modified.
The timestamp-based serial could be implemented as:
a Date (I think this is stored as a 64-bit milliseconds since epoch?)
a Timestamp http://www.mongodb.org/display/DOCS/Timestamp+Data+Type
something "by hand" e.g. store milliseconds as a number
Some nice features to have in a solution would include:
ensure that creating then immediately updating an object within the OS timer resolution will still increment the serial despite it being the same time
even better would to be guaranteed monotonic increase globally for all objects, not just guarantee that changing a given object will bump the serial on that object (absent this, getPostsChangedSince() calls probably need a fuzz backward in time, to avoid missing changes - at price of getting some changes twice)
mongodb-side timestamps might be nice because getting the time in the app creates a gap between when you get the time, and when the new object is saved and available in queries
update using findAndModify() with a query including the old serial, so "conflicts" (two changes at once) will throw an error allowing the app to retry
I realize some of the corner cases here are a little bit "academic" and can likely be fudged around in real life.
My approach so far is:
use the Date type for the serial
when modifying an object, get the current time, and if it matches the object's old serial, add 1 millisecond (yes this breaks if you make two modifications quickly without re-fetching from mongodb, but that seems OK)
use findAndModify(), but based on https://jira.mongodb.org/browse/JAVA-276 there may not be a way to detect if it ends up not finding anything to modify (i.e. second change is ignored, in case of conflict)
Questions:
I feel like I should use Timestamp instead; true? Any downsides?
if you had a mongo cluster, might time in milliseconds be more unique and correct than Timestamp's time in seconds plus a number, while with one mongod Timestamp is more unique?
is there a way to detect whether findAndModify() updated anything?
any general advice / experiences with this problem? how would you do it?
Have you considered "externalizing" the serial number generator? Time with MongoDB precision is good, but can become difficult to synchronize when involving multiple machines. One choice is that you can use memcached or something similar which is memory based, extremely fast and can be serialized (memcached has a CAS operation).
So what you would do is store a "seed" in memcached with a key say, counter.
Everytime an app needs to do an insert, it gets the next number from memcached and increments the counter.
On second thoughts, you can even do away with memcached and just use a single row (sorry document) collection that just has the counter. You can get the counter and increment it which will be an extremely fast operation, mimicking memcached.
And then naturally, you can index the data appropriately. However, I am wondering that this would result in the index to be very imbalanced (right-side loped). Depending upon the situation, it might be worthwhile exploring the use of capped collection. So when you insert data into your main collection, also insert it into the capped collection and read data from that collection.
You could continue to use your regular collection, as you do now, and after each update additionally insert the ID of the post into a special TTL collection. See http://docs.mongodb.org/manual/tutorial/expire-data/ for more info on using such a collection. Mongo will take care of all timing issues, you don't need to worry about serial numbers, and you can very quickly access time based lists of objects by their IDs.
Caveat:
use the blocking form of findAndModify, to ensure the changes have really been processed:
Blocking/Safe Writes
Unless you specify the "new" parameter as true the write operation will not block, and will not return an error (if there is one). If you do want the "new" document returned then the operation will wait until the write is done to return the new document, or an error.
For a "safe" (blocking) write operation you must call getLastError (if not using "new").

What's the fastest way to save data and read it next time in a IPhone App?

In my dictionary IPhone app I need to save an array of strings which actually contains about 125.000 distinct words; this transforms in aprox. 3.2Mb of data.
The first time I run the app I get this data from an SQLite db. As it takes ages for this query to run, I need to save the data somehow, to read it faster each time the app launches.
Until now I've tried serializing the array and write it to a file, and afterword I've tested if writing directly to NSUserDefaults to see if there's any speed gain but there's none. In both ways it takes about 7 seconds on the device to load the data. It seems that not reading from the file (or NSUserDefaults) actually takes all that time, but the deserialization does:
objectsForCharacters = [[NSKeyedUnarchiver unarchiveObjectWithData:data] retain];
Do you have any ideeas about how I could write this data structure somehow that I could read/put in memory it faster?
The UITableView is not really designed to handle 10s of thousands of records. If would take a long time for a user to find what they want.
It would be better to load a portion of the table, perhaps a few hundred rows, as the user enters data so that it appears they have all the records available to them (Perhaps providing a label which shows the number of records that they have got left in there filtered view.)
The SQLite db should be perfect for this job. Add an index to the words table and then select a limited number of rows from it to show the user some progress. Adding an index makes a big difference to the performance of the even this simple table.
For example, I created two tables in a sqlite db and populated them with around 80,000 words
#Create and populate the indexed table
create table words(word);
.import dictionary.txt words
create unique index on words_index on word DESC;
#Create and populate the unindexed table
create table unindexed_words(word);
.import dictionary.txt unindexed_words
Then I ran the following query and got the CPU Time taken for each query
.timer ON
select * from words where word like 'sn%' limit 5000;
...
>CPU Time: user 0.031250 sys 0.015625;
select * from unindex_words where word like 'sn%' limit 5000;
...
>CPU Time: user 0.062500 sys 0.0312
The results vary but the indexed version was consistently faster that the unindexed one.
With fast access to parts of the dictionary through an indexed table, you can bind the UITableView to the database using NSFecthedResultsController. This class takes care of fecthing records as required, caches results to improve performance and allows predicates to be easily specified.
An example of how to use the NSFetchedResultsController is included in the iPhone Developers Cookbook. See main.m
Just keep the strings in a file on the disk, and do the binary search directly in the file.
So: you say the file is 3.2mb. Suppose the format of the file is like this:
key DELIMITER value PAIRDELIMITER
where key is a string, and value is the value you want to associate. The DELIMITER and PAIRDELIMITER must be chosen as such that they don't occur in the value and key.
Furthermore, the file must be sorted on the key
With this file you can just do the binary search in the file itself.
Suppose one types a letter, you go to the half of the file, and search(forwards or backwards) to the first PAIRDELIMITER. Then check the key and see if you have to search upwards or downwards. And repeat untill you find the key you need,
I'm betting this will be fast enough.
Store your dictionary in Core Data and use NSFetchedResultsController to manage the display of these dictionary entries in your table view. Loading all 125,000 words into memory at once is a terrible idea, both performance- and memory-wise. Using the -setFetchBatchSize: method on your fetch request for loading the words for your table, you can limit NSFetchedResultsController to only handling the small subset of words that are visible at any given moment, plus a little buffer. As the user scrolls up and down the list of words, new batches of words are fetched in transparently.
A case like yours is exactly why this class (and Core Data) was added to iPhone OS 3.0.
Do you need to store/load all data at once?
Maybe you can just load the chunk of strings you need to display and load all other strings in the background.
Perhaps you can load data into memory in one thread and search from it in another? You may not get search results instantly, but having some searches feel snappier may be better than none at all, by waiting until all data are loaded.
Are some words searched more frequently or repeatedly than others? Perhaps you can cache frequently searched terms in a separate database or other store. Load it in a separate thread as a searchable store, while you are loading the main store.
As for a data structure solution, you might look into a suffix trie to search for substrings in linear time. This will probably increase your storage requirements, though, which may affect your ability to implement this with an iPhone's limited memory and disk storage capabilities.
I really don't think you're on the right path trying to load everything at once.
You've already determined that your bottleneck is the deserialization.
Regardless what the UI does, the user only sees a handful (literally) of search results at a time.
SQLlite already has a robust indexing mechanism, there is likely no need to re-invent that wheel with your own indexing, etc.
IMHO, you need to rethink how you are using UITableView. It only needs a few screenfuls of data at a time, and you should reuse cell objects as they scroll out of view rather than creating a ton of them to begin with.
So, use SQLlite's indexing and grab "TOP x" rows, where x is the right balance between giving the user some immediately-available rows to scroll through without spending too much time loading them. Set the table's scroll bar scaling using a separate SELECT COUNT(*) query, which only needs to be updated when the user types something different.
You can always go back and cache aggressively after you deserialize enough to get something up on-screen. A slight lag after the first flick or typing a letter is more acceptable than a 7-second delay just starting the app.
I have currently a somewhat similar coding problem with a large amount of searchable strings.
My solution is to store the prepared data in one large memory array, containing both the texttual data and offsets as links. Meaning I do not allocate objects for each item. This makes the data use less memory and also allows me to load & save it to a file without further processing.
Not sure if this is an option for you, since this is quite an obvious solution once you've realized that the object tree is causing the slowdown.
I use a large NSData memory block, then search through it. Well, there's more to it, it took me about two days to get it well optimized.
In your case I suspect you have a dictionary with a lot of words that have similar beginnings. You could prepare them on another computer in a format the both compacts the data and also facilitates fast lookup. As a first step, the words should be sorted. With that, you can already perform a binary search on them for a fast lookup. If you store it all in one large memory area, you can do the search quite fast, compared to how sqlite would search, I think.
Another way would be to see the words as a kind of tree: You have many thousands that begin with the same letter. So you divide your data accordingly: You have a sql table for each beginning letter of your set of words. that way, if you look up a word, you'd select one of the now-smaller tables depening on the first letter. This makes the amount that has to be searched already much smaller. and you can do this for the 2nd and 3rd letter as well, and you already could have quite a fast access.
Did this give you some ideas?
Well actually I figured it out myself in the end, but of course I thank you all for your quick and pertinent answers. To be concise I will just say that, the fact that Objective-C, just like any other object-based programming language, due to introspection and other objective requirements is significantly slower than procedural programming languages.
The solution was in fact to load all my data in a continuous chunk of memory using malloc (a char **) and search on-demand in it and transform to objects. This concluded in a .5 sec loading time (from file to memory) and resonable (should be read "fast") operations during execution. Thank you all again and if you have any questions I'm here for you. Thanks