Cross Correlation of Two Signal to Calculate Delay - matlab

I am working on the cross-correlation of two signals to calculate delay. But somehow, I could not calculate the delay correctly.
i1, i2, and ti1: data link
here is code:
t = ti1; % 1x2097152 double
t_Step = t(2)-t(1);
t_tmp = [-flip(t(2:end)),t];
x = i1; %1x2097152 complex double
y = i2; % 1x2097152 complex double
corrL=length(x)+length(y)-1;
X=fft(x,corrL); % FFT of x
Y=fft(y,corrL); % FFT of y
Z=X.*(conj(Y)); % Hadamard Product/ frequeny domain
z=fftshift(ifft(Z)); % time domain convertion
Ly=length(z);
tz= t_tmp;
[~,idz] = max(z) % find the index at max point of z
TD = tz(idz)*t_Step % Time Delay
if(TD<0)
distance = -TD * 204357.1915 % speed of light in specific indise is 204357.1915 distance calculation
else(TD<0)
distance = TD * 204357.1915
end
%Plot Section
%Original and delayed signal
plot(t,x,'r',t,y,'g');
legend('Original','Delayed');
%Cross Correlated Signal
[z_max, index] = max(imag(z))
figure
%plot(tz,z,tz(index),y(index),'o'); hold on
plot(tz,z,tz(index),z_max,'o')
xlabel('Time');
ylabel('Magnitude');
title('z signal');
grid
Here is the marked signal which puts the mark in the wrong place:
I was expected to put the mark at the max amplitude point, so somehow I could not put the mark at the extremum point of amplitude. Could you help me to fix that?

Related

inverse fourier transform of data does not give correct amplitude

I'm trying to calculate the inverse Fourier transform of some data using Matlab. I start with raw data in the frequency domain and want to visualise the data in the time domain. Here is my MWE:
a = 1.056;
% frequency of data (I cannot change this)
w = linspace(-100,100,1e6);
L = length(w); % no. sample points
ts = L/1000; % time sampling
Ts = ts/L; % sampling rate
Fs = 1/Ts; % sampling freq
t = (-L/2:L/2-1)*ts/L; % time
Y = sqrt(pi/a)*exp(-w.^2/(4*a)); % my data
yn = Fs*ifftshift(ifft(fftshift(Y(end:-1:1)))) % numerical soln
ya = exp(-a*t.^2); % analytic solution
figure; hold on
plot(t,yn,'.')
plot(t,ya,'-')
xlabel('time, t')
legend('numerical','analytic')
xlim([-5,5])
I have adapted the code from this question however the amplitude is too large:
Can you please tell me what I'm doing wrong?
There are three issues with your code:
You define ts = L/1000 and then compute Fs, which gives you 1000. But Fs is given by the w array you've set up: the full range of w is 2*pi*Fs:
Fs = -w(1)/pi; % sampling freq
Ts = 1/Fs; % sampling rate
Or, equivalently, set Fs = mean(diff(w))*L / (2*pi)
w is defined, but does not include 0. Just like you define t carefully to include the 0 in just the right place, so should you define w to include 0 in just the right place. One simple way to do this is to define it with one more value, then delete the last value:
w = linspace(-100,100,1e6+1);
w(end) = [];
If your input data does not include the 0 frequency, you should resample it so that it does. The DFT (FFT) expects a 0 frequency bin.
You're using ifftshift and fftshift reversed: fftshift shifts the origin from the leftmost array element to the middle, and ifftshift shifts it from the middle to the left. You define your signal with the origin in the middle, so you need to use ifftshift on it to move the origin where the fft and ifft functions expect it. Use fftshift on the output of these two functions to center the origin for display. Because your data is even sized, these two functions do exactly the same thing, and you will not notice the difference. But if the data were odd sized, you'd see the difference.
The following code gives a perfect match:
a = 1.056;
% frequency of data (I cannot change this)
w = linspace(-100,100,1e6+1); w(end) = [];
L = length(w); % no. sample points
Fs = -w(1)/pi; % sampling freq
Ts = 1/Fs; % sampling rate
t = (-L/2:L/2-1)*Ts; % time
Y = sqrt(pi/a)*exp(-w.^2/(4*a)); % my data
yn = Fs*fftshift(ifft(ifftshift(Y(end:-1:1)))); % numerical soln
ya = exp(-a*t.^2); % analytic solution
figure; hold on
plot(t,yn,'.')
plot(t,ya,'-')
xlabel('time, t')
legend('numerical','analytic')
xlim([-5,5])

MATLAB: How to apply ifft correctly to bring a "filtered" signal back to the time doamin?

I am trying to get the output of a Gaussian pulse going through a coax cable. I made a vector that represents a coax cable; I got attenuation and phase delay information online and used Euler's equation to create a complex array.
I FFTed my Gaussian vector and convoluted it with my cable. The issue is, I can't figure out how to properly iFFT the convolution. I read about iFFt in MathWorks and looked at other people's questions. Someone had a similar problem and in the answers, someone suggested to remove n = 2^nextpow2(L) and FFT over length(t) instead. I was able to get more reasonable plot from that and it made sense to why that is the case. I am confused about whether or not I should be using the symmetry option in iFFt. It is making a big difference in my plots. The main reason I added the symmetry it is because I was getting complex numbers in the iFFTed convolution (timeHF). I would truly appreciate some help, thanks!
clc, clear
Fs = 14E12; %1 sample per pico seconds
tlim = 4000E-12;
t = -tlim:1/Fs:tlim; %in pico seconds
ag = 0.5; %peak of guassian
bg = 0; %peak location
wg = 50E-12; %FWHM
x = ag.*exp(-4 .* log(2) .* (t-bg).^2 / (wg).^2); %Gauss. in terms of FWHM
Ly = x;
L = length(t);
%n = 2^nextpow2(L); %test output in time domain with and without as suggested online
fNum = fft(Ly,L);
frange = Fs/L*(0:(L/2)); %half of the spectrum
fNumMag = abs(fNum/L); %divide by n to normalize
% COAX modulation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%phase data
mu = 4*pi*1E-7;
sigma_a = 2.9*1E7;
sigma_b = 5.8*1E6;
a = 0.42E-3;
b = 1.75E-3;
er = 1.508;
vf = 0.66;
c = 3E8;
l = 1;
Lso = sqrt(mu) /(4*pi^3/2) * (1/(sqrt(sigma_a)*a) + 1/(b*sqrt(sigma_b)));
Lo = mu/(2*pi) * log(b/a);
%to = l/(vf*c);
to = 12E-9; %measured
phase = -pi*to*(frange + 1/2 * Lso/Lo * sqrt(frange));
%attenuation Data
k1 = 0.34190;
k2 = 0.00377;
len = 1;
mldb = (k1 .* sqrt(frange) + k2 .* frange) ./ 100 .* len ./1E6;
mldb1 = mldb ./ 0.3048; %original eqaution is in inch
tfMag = 10.^(mldb1./-10);
% combine to make in complex form
tfC = [];
for ii = 1: L/2 + 1
tfC(ii) = tfMag(ii) * (cosd(phase(ii)) + 1j*sind(phase(ii)));
end
%END ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%convolute both h and signal
fNum = fNum(1:L/2+1);
convHF = tfC.*fNum;
convHFMag = abs(convHF/L);
timeHF = ifft(convHF, length(t), 'symmetric'); %this is the part im confused about
% Ignore,
% tfC(numel(fNum)) = 0;
% convHF = tfC.*fNum;
% convHFMag = abs(convHF/n);
% timeHF = ifft(convHF);
%% plotting
% subplot(2, 2, 1);
% plot(t, Ly)
% title('Gaussian input');
% xlabel('time in seconds')
% ylabel('V')
% grid
subplot(2, 2, 1)
plot(frange, abs(tfC(1: L/2 + 1)));
set(gca, 'Xscale', 'log')
title('coax cable model')
xlabel('Hz')
ylabel('|H(s)|V/V')
grid
ylim([0 1.1])
subplot(2, 2, 2);
plot(frange, convHFMag(1:L/2+1), '.-', frange, fNumMag(1:L/2+1)) %make both range and function the same lenght
title('The input signal Vs its convolution with coax');
xlabel('Hz')
ylabel('V')
legend('Convolution','Lorentzian in frequecuency domain');
xlim([0, 5E10])
grid
subplot(2, 2, [3, 4]);
plot(t, Ly, t, timeHF)
% plot(t, real(timeHF(1:length(t)))) %make both range and function the same lenght
legend('Input', 'Output')
title('Signal at the output')
xlabel('time in seconds')
ylabel('V')
grid
It's important to understand deeply the principles of the FFT to use it correctly.
When you apply Fourier transform to a real signal, the coefficients at negative frequencies are the conjugate of the ones at positive frequencies. When you apply FFT to a real numerical signal, you can show mathematically that the conjugates of the coefficients that should be at negative frequencies (-f) will now appear at (Fsampling-f) where Fsampling=1/dt is the sampling frequency and dt the sampling period. This behavior is called aliasing and is present when you apply fft to a discrete time signal and the sampling period should be chosen small enaough for those two spectra not to overlap Shannon criteria.
When you want to apply a frequency filter to a signal, we say that we keep the first half of the spectrum because the high frequencies (>Fsampling/2) are due to aliasing and are not characteristics of the original signal. To do so, we put zeros on the second half of the spectra before multiplying by the filter. However, by doing so you also lose half of the amplitude of the original signal that you will not recover with ifft. The option 'symmetric' enable to recover it by adding in high frequencis (>Fsampling/2) the conjugate of the coefficients at lower ones (<Fsampling/2).
I simplified the code to explain briefly what's happening and implemented for you at line 20 a hand-made symmetrisation. Note that I reduced the sampling period from one to 100 picoseconds for the spectrum to display correctly:
close all
clc, clear
Fs = 14E10; %1 sample per pico seconds % CHANGED to 100ps
tlim = 4000E-12;
t = -tlim:1/Fs:tlim; %in pico seconds
ag = 0.5; %peak of guassian
bg = 0; %peak location
wg = 50E-12; %FWHM
NT = length(t);
x_i = ag.*exp(-4 .* log(2) .* (t-bg).^2 / (wg).^2); %Gauss. in terms of FWHM
fftx_i = fft(x_i);
f = 1/(2*tlim)*(0:NT-1);
fftx_r = fftx_i;
fftx_r(floor(NT/2):end) = 0; % The removal of high frequencies due to aliasing leads to losing half the amplitude
% HER YOU APPLY FILTER
x_r1 = ifft(fftx_r); % without symmetrisation (half the amplitude lost)
x_r2 = ifft(fftx_r, 'symmetric'); % with symmetrisation
x_r3 = ifft(fftx_r+[0, conj(fftx_r(end:-1:2))]); % hand-made symmetrisation
figure();
subplot(211)
hold on
plot(t, x_i, 'r')
plot(t, x_r2, 'r-+')
plot(t, x_r3, 'r-o')
plot(t, x_r1, 'k--')
hold off
legend('Initial', 'Matlab sym', 'Hand made sym', 'No sym')
title('Time signals')
xlabel('time in seconds')
ylabel('V')
grid
subplot(212)
hold on
plot(f, abs(fft(x_i)), 'r')
plot(f, abs(fft(x_r2)), 'r-+')
plot(f, abs(fft(x_r3)), 'r-o')
plot(f, abs(fft(x_r1)), 'k--')
hold off
legend('Initial', 'Matlab sym', 'Hand made sym', 'No sym')
title('Power spectra')
xlabel('frequency in hertz')
ylabel('V')
grid
Plots the result:
Do not hesitate if you have further questions. Good luck!
---------- EDIT ----------
The amplitude of discrete Fourier transform is not the same as the continuous one. If you are interested in showing signal in frequency domain, you will need to apply a normalization based on the convention you have chosen. In general, you use the convention that the amplitude of the Fourier transform of a Dirac delta function has amplitude one everywhere.
A numerical Dirac delta function has an amplitude of one at an index and zeros elsewhere and leads to a power spectrum equal to one everywhere. However in your case, the time axis has sample period dt, the integral over time of a numerical Dirac in that case is not 1 but dt. You must normalize your frequency domain signal by multiplying it by a factor dt (=1picoseceond in your case) to respect the convention. You can also note that this makes the frequency domain signal homogeneous to [unit of the original multiplied by a time] which is the correct unit of a Fourier transform.

Morlet wavelet transformation function returns nonsensical plot

I have written a matlab function (Version 7.10.0.499 (R2010a)) to evaluate incoming FT signal and calculate the morlet wavelet for the signal. I have a similar program, but I needed to make it more readable and closer to mathematical lingo. The output plot is supposed to be a 2D plot with colour showing the intensity of the frequencies. My plot seems to have all frequencies the same per time. The program does make an fft per row of time for each frequency, so I suppose another way to look at it is that the same line repeats itself per step in my for loop. The issue is I have checked with the original program, which does return the correct plot, and I cannot locate any difference beyond what I named the values and how I organized the code.
function[msg] = mile01_wlt(FT_y, f_mn, f_mx, K, N, F_s)
%{
Fucntion to perform a full wlt of a morlet wavelett.
optimization of the number of frequencies to be included.
FT_y satisfies the FT(x) of 1 envelope and is our ft signal.
f min and max enter into the analysis and are decided from
the f-image for optimal values.
While performing the transformation there are different scalings
on the resulting "intensity".
Plot is made with a 2D array and a colour code for intensity.
version 05.05.2016
%}
%--------------------------------------------------------------%
%{
tableofcontents:
1: determining nr. of analysis f, prints and readies f's to be used.
2: ensuring correct orientation of FT_y
3:defining arrays
4: declaring waveletdiagram and storage of frequencies
5: for-loop over all frequencies:
6: reducing file to manageable size by truncating time.
7: marking plot to highlight ("randproblemer")
8: plotting waveletdiagram
%}
%--------------------------------------------------------------%
%1: determining nr. of analysis f, prints and readies f's to be used.
DF = floor( log(f_mx/f_mn) / log(1+( 1/(8*K) ) ) ) + 1;% f-spectre analysed
nr_f_analysed = DF %output to commandline
f_step = (f_mx/f_mn)^(1/(DF-1)); % multiplicative step for new f_a
f_a = f_mn; %[Hz] frequency of analysis
T = N/F_s; %[s] total time sampled
C = 2.0; % factor to scale Psi
%--------------------------------------------------------------%
%2: ensuring correct orientation of FT_y
siz = size(FT_y);
if (siz(2)>siz(1))
FT_y = transpose(FT_y);
end;
%--------------------------------------------------------------%
%3:defining arrays
t = linspace(0, T*(N-1)/N, N); %[s] timespan
f = linspace(0, F_s*(N-1)/N, N); %[Hz] f-specter
%--------------------------------------------------------------%
%4: declaring waveletdiagram and storage of frequencies
WLd = zeros(DF,N); % matrix of DF rows and N columns for storing our wlt
f_store = zeros(1,DF); % horizontal array for storing DF frequencies
%--------------------------------------------------------------%
%5: for-loop over all frequencies:
for jj = 1:DF
o = (K/f_a)*(K/f_a); %factor sigma
Psi = exp(- 0*(f-f_a).*(f-f_a)); % FT(\psi) for 1 envelope
Psi = Psi - exp(-K*K)*exp(- o*(f.*f)); % correctional element
Psi = C*Psi; %factor. not set in stone
%next step fits 1 row in the WLd (3 alternatives)
%WLd(jj,:) = abs(ifft(Psi.*transpose(FT_y)));
WLd(jj,:) = sqrt(abs(ifft(Psi.*transpose(FT_y))));
%WLd(jj,:) = sqrt(abs(ifft(Psi.*FT_y))); %for different array sizes
%and emphasizes weaker parts.
%prep for next round
f_store (jj) = f_a; % storing used frequencies
f_a = f_a*f_step; % determines the next step
end;
%--------------------------------------------------------------%
%6: reducing file to manageable size by truncating time.
P = floor( (K*F_s) / (24*f_mx) );%24 not set in stone
using_every_P_point = P %printout to cmdline for monitoring
N_P = floor(N/P);
points_in_time = N_P %printout to cmdline for monitoring
% truncating WLd and time
WLd2 = zeros(DF,N_P);
for jj = 1:DF
for ii = 1:N_P
WLd2(jj,ii) = WLd(jj,ii*P);
end
end
t_P = zeros(1,N_P);
for ii = 1:N_P % set outside the initial loop to reduce redundancy
t_P(ii) = t(ii*P);
end
%--------------------------------------------------------------%
%7: marking plot to highlight boundary value problems
maxval = max(WLd2);%setting an intensity
mxv = max(maxval);
% marks in wl matrix
for jj= 1:DF
m = floor( K*F_s / (P*pi*f_store(jj)) ); %finding edges of envelope
WLd2(jj,m) = mxv/2; % lower limit
WLd2(jj,N_P-m) = mxv/2;% upper limit
end
%--------------------------------------------------------------%
%8: plotting waveletdiagram
figure;
imagesc(t_P, log10(f_store), WLd2, 'Ydata', [1 size(WLd2,1)]);
set(gca, 'Ydir', 'normal');
xlabel('Time [s]');
ylabel('log10(frequency [Hz])');
%title('wavelet power spectrum'); % for non-sqrt inensities
title('sqrt(wavelet power spectrum)'); %when calculating using sqrt
colorbar('location', 'southoutside');
msg = 'done.';
There are no error message, so I am uncertain what exactly I am doing wrong.
Hope I followed all the guidelines. Otherwise, I apologize.
edit:
my calling program:
% establishing parameters
N = 2^(16); % | number of points to sample
F_s = 3.2e6; % Hz | samplings frequency
T_t = N/F_s; % s | length in seconds of sample time
f_c = 2.0e5; % Hz | carrying wave frequency
f_m = 8./T_t; % Hz | modulating wave frequency
w_c = 2pif_c; % Hz | angular frequency("omega") of carrying wave
w_m = 2pif_m; % Hz | angular frequency("omega") of modulating wave
% establishing parameter arrays
t = linspace(0, T_t, N);
% function variables
T_h = 2*f_m.*t; % dimless | 1/2 of the period for square signal
% combined carry and modulated wave
% y(t) eq. 1):
y_t = 0.5.*cos(w_c.*t).*(1+cos(w_m.*t));
% y(t) eq. 2):
% y_t = 0.5.*cos(w_c.*t)+0.25*cos((w_c+w_m).*t)+0.25*cos((w_c-w_m).*t);
%square wave
sq_t = cos(w_c.*t).*(1 - mod(floor(t./T_h), 2)); % sq(t)
% the following can be exchanged between sq(t) and y(t)
plot(t, y_t)
% plot(t, sq_t)
xlabel('time [s]');
ylabel('signal amplitude');
title('plot of harmonically modulated signal with carrying wave');
% title('plot of square modulated signal with carrying wave');
figure()
hold on
% Fourier transform and plot of freq-image
FT_y = mile01_fftplot(y_t, N, F_s);
% FT_sq = mile01_fftplot(sq_t, N, F_s);
% Morlet wavelet transform and plot of WLdiagram
%determining K, check t-image
K_h = 57*4; % approximation based on 1/4 of an envelope, harmonious
%determining f min and max, from f-image
f_m = 1.995e5; % minimum frequency. chosen to showcase all relevant f
f_M = 2.005e5; % maximum frequency. chosen to showcase all relevant f
%calling wlt function.
name = 'mile'
msg = mile01_wlt(FT_y, f_m, f_M, K_h, N, F_s)
siz = size(FT_y);
if (siz(2)>siz(1))
FT_y = transpose(FT_y);
end;
name = 'arnt'
msg = arnt_wltransf(FT_y, f_m, f_M, K_h, N, F_s)
The time image has a constant frequency, but the amplitude oscillates resempling a gaussian curve. My code returns a sharply segmented image over time, where each point in time holds only 1 frequency. It should reflect a change in intensity across the spectra over time.
hope that helps and thanks!
I found the error. There is a 0 rather than an o in the first instance of Psi. Thinking I'll maybe rename the value as sig or something. besides this the code works. sorry for the trouble there

Low pass filter implementation Correct or wrong?

I've been working on 2 sensors signals measuring vibrations of a rotating shaft. Since there is residual noise in the signal. I tried to filter it by detrending, zero padding and applying low pass filter. Below I'm attaching the graphs of the signal before and after filtering. There is a huge variation in the signal after filtering that makes me think if I'm really doing it in the right way.
My Matlab code is
X = xlsread(filename,'F:F');
Y = xlsread(filename,'G:G');
%Calculate frequency axis
fs = 1e6 ; % Sampling frequency (Hz)
NFFT = 2^nextpow2(length(X)); % Zero padding to nearest N power 2
df = fs/NFFT;
dt = 1/df;
%Frequency Axis defintion
f = (-(fs-df)/2:df:(fs-df)/2)';
X(2^ceil(log2(length(X))))=0;
Y(2^ceil(log2(length(Y))))=0;
%calculate time axis
T = (dt:dt:(length(X)*dt))';
subplot(2,2,1)
plot(T,X);
xlabel('Time(s)')
ylabel('X amplitude')
title('X signal before filtering')
subplot(2,2,2)
plot(T,Y);
xlabel('Time(s)')
ylabel('Y amplitude')
title('Y signal before filtering')
X = detrend(X,0); % Removing DC Offset
Y = detrend(Y,0); % Removing DC Offset
% Filter parameters:
M = length(X); % signal length
L = M; % filter length
fc = 2*(38000/60); % cutoff frequency
% Design the filter using the window method:
hsupp = (-(L-1)/2:(L-1)/2);
hideal = (2*fc/fs)*sinc(2*fc*hsupp/fs);
h = hamming(L)' .* hideal; % h is our filter
% Zero pad the signal and impulse response:
X(2^ceil(log2(M)))=0;
xzp = X;
hzp = [ h zeros(1,NFFT-L) ];
% Transform the signal and the filter:
X = fft(xzp);
H = fft(hzp)';
X = X .* H;
X = ifft(X);
relrmserrX = norm(imag(X))/norm(X); % checked... this for zero
X = real(X)';
% Zero pad the signal and impulse response:
Y(2^ceil(log2(M)))=0;
xzp = Y;
hzp = [ h zeros(1,NFFT-L) ];
% Transform the signal and the filter:
Y = fft(xzp);
H = fft(hzp)';
Y = Y .* H;
Y = ifft(Y);
relrmserrY = norm(imag(Y))/norm(Y); % check... should be zero
Y = real(Y)';
I plotted the after filtering and as you can see in the picture there is a clear deviation. I want to only filter noise but the signal seem to loose other components and I'm little confused if thats the right way of doing filtering.
Any suggestion, hints or ideas would be helpful.
In the end I want to plot X vs Y to give orbits of the shaft vibration. Please also find below another picture of the unfiltered and filtered orbit. As you can see in the picture there is also change in the orbits from the original one (left image with lot of noise).
P.S.: I don't have DSP tool box
There is no problem with your FFT and IFFT.
You can test your code with a simple sine wave, with a very low frequency. The final output should be (almost) the same sine wave, since you are low-pass filtering it.
You've defined X (and Y) from 0 to some value. However, you've defined H from - (L-1)/2 to some positive value. Mathematically, this is fine, but you are simply taking an fft of H. Matlab thinks this has the same time-scale as X, when you multiply the ffts together!
So, in reality, you've taken the fft of XHfft(delta(t-d)), where d is the resulting time-shift. You can either undo this time-shift in the frequency domain, or the time-domain.

on the use and understanding of pwelch in matlab

I'm using the pwelch method in matlab to compute the power spectra for some wind speed measurements. So, far I have written the following code as an example:
t = 10800; % number of seconds in 3 hours
t = 1:t; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y = A*sin(2*pi*f1*t); % signal
fh = figure(1);
set(fh,'color','white','Units', 'Inches', 'Position', [0,0,6,6],...
'PaperUnits', 'Inches', 'PaperSize', [6,6]);
[pxx, f] = pwelch(y,[],[],[],fs);
loglog(f,10*(pxx),'k','linewidth',1.2);
xlabel('log10(cycles per s)');
ylabel('Spectral Density (dB Hz^{-1})');
I cannot include the plot as I do not have enough reputation points
Does this make sense? I'm struggling with the idea of having noise at the right side of the plot. The signal which was decomposed was a sine wave with no noise, where does this noise come from? Does the fact that the values on the yaxis are negative suggest that those frequencies are negligible? Also, what would be the best way to write the units on the y axis if the wind speed is measured in m/s, can this be converted to something more meaningful for environmental scientists?
Your results are fine. dB can be confusing.
A linear plot will get a good view,
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
y = sin(2 * pi * 50 * t); % 50Hz signal
An fft approach,
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);
subplot(1,2,1);
plot(f,2*abs(Y(1:NFFT/2+1)))
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
pwelch approach,
subplot(1,2,2);
[pxx, freq] = pwelch(y,[],[],[],Fs);
plot(freq,10*(pxx),'k','linewidth',1.2);
xlabel('Frequency (Hz)');
ylabel('Spectral Density (Hz^{-1})');
As you can see they both have peak at 50Hz.
Using loglog for both,
So "noise" is of 1e-6 and exists in fft as well, and can be ignored.
For your second question, I don't think the axis will change it will be frequency again. For Fs you should use the sampling frequency of wind speed, like if you have 10 samples of speed in one second your Fs is 10. Higher frequencies in your graph means more changes in wind speed and lower frequencies represent less changes for the speed.