Are Photon raise event and rpc interchangeable? - unity3d

I've read a few forum posts that some people prefer to use raise event over rpc,
but I can't find the reason why they prefer it. Is raise event interchangeable with rpc?
I mean I get it raise event is easier to use than RPC , because RPC requires the gameobject holding it to have photon view. But is there a situation where I should be using rpc instead of raise event? Any input is greatly appreciated !

RPCs and Events are very similar, but have some key similarities/differences:
Both:
Have options for buffering: (RpcTarget.*Buffered and RaiseEventOptions.CachingOptions)
Have options for encryption: (RpcSecure and SendOptions.Encrypt)
Have options for targeting specific users: (RpcTarget and RaiseEventOptions.Receivers)
Only RPC(s):
Require the [PunRPC] method attribute
Require (and run) on a particular object with a PhotonView
if the object no longer exists on the remote, the RPC never runs and is dropped
Have parameters defined by the method declaration only
Does support method overloading, but not optional parameters
Can have PhotonMessageInfo parameter
Only RaiseEvent(s):
Are always sent "ViaServer"
Your local client will be sent a copy of the event through the server, rather than executing locally immediately (assuming you're a receiver)
Can be circumvented by calling your OnEvent method directly, and using ReceiverGroup.Others
Uses a callback target defining the OnEvent method
Can be called without the need for a target PhotonView
Parameters arbitrary defined, they must be manually parsed/casted by the client
Have a limit of user-definable IDs: 1-200 (can be circumvented with parameters as sub-IDs)
Can be sent both reliably and unreliably via SendOptions
TL;DR: Generally, you'll want to use an RPC if something is related to a PhotonView, and a RaiseEvent call if not. They have basically the same capabilities otherwise
Source: Photon PUN Documentation: "RPCs and RaiseEvent"

Related

hunchentoot session- v. thread-localized values (ccl)

I'm using hunchentoot session values to make my server code re-entrant. Problem is that session values are, by definition, retained during the session, i.e., from one call from the same browser to the next, whereas what I really am looking for is what amount to thread-specific re-entrancy, so that all the values disappear between calls -- I want to treat each click as a separate "from scratch" event, even if they are from the same session . Easy enough to have the driver either set to nil, or delete my session values, but I'm wondering if there's a "correct" way to do this? I don't see any thread-based analog to hunchentoot:session-value in the documentation.
Thanks in advance for any guidance you can offer.
If you want a value to be "thread specific" and at the same time to be "from scratch" on every request, that requires that every request must be dispatched in a brand new thread. This is not the case according to the Hunchentoot documentation, which says that two models are supported: a single-threaded taskmaster and a thread-per-connection taskmaster.
If your configuration is multi-threaded, then a thread-specific variable bound in a request-handling can therefore be expected to be per-connection. In a single-threaded Hunchentoot setup, it will effectively be global, tied to the request servicing thread.
A thread-based analog to hunchentoot:session-value probably doesn't exist because it would only introduce behaviors into the web app which surprisingly change if the threading model is reconfigured, or if the request pattern from the browser changes. A browser can make multiple requests using the same connection, or close the connection between requests.
To extend the request objects with custom per-request, I would look into, perhaps, subclassing from the acceptor (how to do this is described in the docs). My custom acceptor would have a custom method of the process-connection generic function which would create extended/subclasses request objects carrying the extra stuff I wanted to put into a request.
Another way would be to have some global weak hash which binds request objects as keys to additional information.

What is the difference between hook and callback?

By reading some text, especially the iOS document about delegate, all the protocol method are called hook that the custom delegate object need to implement. But some other books, name these hook as callback, what is the difference between them? Are they just different name but the same mechanism? In addition to Obj-C, some other programming languages, such as C, also got the hook, same situation with Obj-C?
The terminology here is a bit fuzzy. In general the two attempt to achieve similar results.
In general, a callback is a function (or delegate) that you register with the API to be called at the appropriate time in the flow of processing (e.g to notify you that the processing is at a certain stage)
A hook traditionally means something a bit more general that serves the purpose of modifying calls to the API (e.g. modify the passed parameters, monitor the called functions). In this meaning it is usually much lower level than what can be achieved by higher-level languages like Java.
In the context of iOS, the word hook means the exact same thing as callback above
Let me chime in with a Javascript answer. In Javascript, callbacks, hooks and events are all used. In this order, they are each higher level concepts than the other.
Unfortunately, they are often used improperly which leads to confusion.
Callbacks
From a control flow perspective, a callback is a function, usually given as an argument, that you execute before returning from your function.
This is usually used in asynchoronous situations when you need to wait for I/O (e.g. HTTP request, a file read, a database query etc.). You don't want to wait with a synchronous while loop, so other functions can be executed in the meantime.
When you get your data, you (permanently) relinquish control and call the callback with the result.
function myFunc(someArg, callback) {
// ...
callback(error, result);
}
Because the callback function may be some code that hasn't been executed yet, and you don't know what's above your function in the call stack, generally instead of throwing errors you pass on the error to the callback as an argument. There are error-first and result-first callback conventions.
Mostly callbacks have been replaced by Promises in the Javascript world and since ES2017+, you can natively use async/await to get rid of callback-rich spaghetti code and make asynchronous control flow look like it was synchronous.
Sometimes, in special cascading control flows you run callbacks in the middle of the function. E.g. in Koa (web server) middleware or Redux middleware you run next() which returns after all the other middlewares in the stack have been run.
Hooks
Hooks are not really a well-defined term, but in Javascript practice, you provide hooks when you want a client (API/library user, child classes etc.) to take optional actions at well-defined points in your control flow.
So a hook may be some function (given as e.g. an argument or a class method) that you call at a certain point e.g. during a database update:
data = beforeUpdate(data);
// ...update
afterUpdate(result);
Usually the point is that:
Hooks can be optional
Hooks usually are waited for i.e. they are there to modify some data
There is at most one function called per hook (contrary to events)
React makes use of hooks in its Hooks API, and they - quoting their definition - "are functions that let you “hook into” React state and lifecycle features", i.e. they let you change React state and also run custom functions each time when certain parts of the state change.
Events
In Javascript, events are emitted at certain points in time, and clients can subscribe to them. The functions that are called when an event happens are called listeners - or for added confusion, callbacks. I prefer to shun the term "callback" for this, and use the term "listener" instead.
This is also a generic OOP pattern.
In front-end there's a DOM interface for events, in node.js you have the EventEmitter interface. A sophisticated asynchronous version is implemented in ReactiveX.
Properties of events:
There may be multiple listeners/callbacks subscribed (to be executed) for the same event.
They usually don't receive a callback, only some event information and are run synchronously
Generally, and unlike hooks, they are not for modifying data inside the event emitter's control flow. The emitter doesn't care 'if there is anybody listening'. It just calls the listeners with the event data and then continues right away.
Examples: events happen when a data stream starts or ends, a user clicks on a button or modifies an input field.
The two term are very similar and are sometimes used interchangably. A hook is an option in a library were the user code can link a function to change the behavior of the library. The library function need not run concurrent with the user code; as in a destructor.
A callback is a specific type of hook where the user code is going to initiate the library call, usually an I/O call or GUI call, which gives contol over to the kernel or GUI subsystem. The controlling process then 'calls back' the user code on an interupt or signal so the user code can supply the handler.
Historically, I've seen hook used for interupt handlers and callback used for GUI event handlers. I also see hook used when the routine is to be static linked and callback used in dynamic code.
Two great answers already, but I wanted to throw in one more piece of evidence the terms "hook" and "callback" are the same, and can be used interchangeably: FreeRTOS favors the term "hook" but recognizes "callback" as an equivalent term, when they say:
The idle task can optionally call an application defined hook (or callback) function - the idle hook.
The tick interrupt can optionally call an application defined hook (or callback) function - the tick hook.
The memory allocation schemes implemented by heap_1.c, heap_2.c, heap_3.c, heap_4.c and heap_5.c can optionally include a malloc() failure hook (or callback) function that can be configured to get called if pvPortMalloc() ever returns NULL.
Source: https://www.freertos.org/a00016.html

Accumulated methods invocation order in RequestContext#fire()?

Javadoc for RequestContext#fire() says only:
Send the accumulated changes and method invocations associated with the RequestContext.
GWT Moving Parts wiki entry under Flow section says only:
All accumulated operations will be applied to the domain objects by traversing properties of the proxies.
All method invocations in the payload are executed.
But will these methods be executed on the server side in the same order they were "executed" (accumulated) on ReqestContext instance on client side?
For my situation, if I execute on client side:
context.persist().using(proxy)
context.find(proxy.stableId().to(updatingReceiver))
context.fire()
Then may I be sure that on server side find() will be invoked after persist() so my updatingReceiver will get proxy of updated (persist()'ed) entity as an argument?
EDIT:
Going further, may I be sure that back on client after response Recievers will be invoked in exactly the same order in which their corresponding methods were accumulated?
Finally, is there a way to add some action that will be invoked at the end of response handling, after all Receivers' actions?
I thought something like this may work:
requestContext.fire(new Receiver<Void>() {
#Override
public void onSuccess(Void response) {
//Things to do after all receivers
});
And it really seems to work as I expected but because all that Javadoc is telling me about RequestContext.fire(Receiver) method is:
For receiving errors or validation failures only.
I'm not 100% sure whether my assumption is correct.
Yes, order of method invocations is preserved, both on the server-side and then back on the client side when calling Recievers.
The queue is a simple ArrayList in which invocation objects are appended. On the server-side, they're processed in the order they're received.
The Request-Context-level Receiver is always called after the ones for invocations. Its onSuccess is always called, whatever the result of the invocations (even if they all fail), to signal that the batch of invocations was processed successfully. Its onFailure is only called in case of a general failure, i.e. a network error, or an error when (de)serializing requests/responses on the server-side.
See http://code.google.com/p/google-web-toolkit/source/browse/trunk/user/src/com/google/web/bindery/requestfactory/shared/impl/AbstractRequestContext.java?r=10835#345

How is Callback handling implemented?

In the past, I have used libraries that would allow me to register a callback so that the library can call my method when some event happens (e.g. it is common to see in code that use GUI libraries to look like button.onClick(clickHandler)).
Naively, I suppose the library's handling mechanism could be implemented like:
while(1){
if (event1) { event1Handler(); }
if (event2) { event2Handler(); }
...
}
but that would be really wasteful right? Or is that really how it is done (for instance do well known GUI libraries like java swing, or GTK+ do it this way)?
background:
This question hadn't really occured to me until I encountered curses. I thought about implementing my own callback system, until I realized I didn't know how.
The while loop will typically wait for an interrupt from the user (GetMessage in Windows). When an interrupt arrives GetMessage returns and then it ends up in the callback function. The if statements are typically implemented as a switch-case. See Windows Message Loop on Wikipedia.
In more detail, what happens is the following:
The user application calls GetMessage, which forces the process to sleep until an input message for that application arrives from the systems queue. When a message arrives, the user app calls DispatchMessage, which calls the callback function associated with the window that the message was aimed at.
Windows API uses one callback which handles all events in a switch case. Other libraries use one callback per event class instead.
The function pointers themselves are stored together with other window data in a struct.
Callback system implementation probably has different implementation in different technologies, however, I suppose they should be working this way:
A data structure stores the callback IDs and pointers to the handlers.
A callback handler has a validator
Event handlers have callback callers, which know what are the possible callbacks and check their validity this way:
for each callback in event.callbacks
if (callback.isValid())
call callback()
end if
end for
When you add a handler to a function the system will automatically know where the callback is valid and will add the callback to the datastructure described in 1.
Correct me if I'm wrong, this description is just a guess.

What is a callback?

Is it a function?
Is it a function being called from the source?
Or, is it a function being returned from the destination?
Or, is it just executing a function at the destination?
Or, is it a value returned from a function passed to the destination?
A callback is the building block of asynchronous processing.
Think of it this way: when you call someone and they don't answer, you leave a message and your phone number. Later on, the person calls you back based on the phone number you left.
A callback works in a similar manner.
You ask an API for a long running operation and you provide a method from within your code to be called with the result of the operation. The API does its work and when the result is ready, it calls your callback method.
From the great Wikipedia:
In computer programming, a callback is
executable code that is passed as an
argument to other code. It allows a
lower-level software layer to call a
subroutine (or function) defined in a
higher-level layer.
Said another way, when you pass a callback to your method, it's as if you are providing additional instructions (e.g., what you should do next). An attempt at making a simple human example follows:
Paint this wall this shade of green (where "paint" is analagous to the method called, while "wall" and "green" are similar to arguments).
When you have finished painting, call me at this number to let me know that you're done and I'll tell you what to do next.
In terms of practical applications, one place where you will sometimes see callbacks is in situations with asynchronous message passing. You might want to register a particular message as an item of interest for class B.
However, without something like a callback, there's no obvious way for class A to know that class B has received the message. With a callback, you can tell class B, here's the message that I want you to listen for and this is the method in class A that I want you to call when you receive it.
Here is a Java example of a callback from a related question.