how to configure k8s autoscaling? - kubernetes

How should I configure it to proceed with automatic scale when the average cpu 20% of the pod is over? If the limited pod amount of nodes is exceeded when auto-scaling, how do I expand the nodes horizontally? Is there a way to automatically expand the pod without specifying max and min?

You need to deploy a cluster autoscaler and configure a horizontal pod autoscaler for your workload.

Related

does GKE autopilot auto scale both pods and nodes?

when I change the replicas: x in my .yaml file I can see GKE autopilot boots pods up/down depending on the value, but what will happen if the load on my deployment gets too big. Will it then autoscale the number of pods and nodes to handle the traffic and then reduce back to the value specified in replicas when the request load is reduced again?
I'm basically asking how does autopilot horizontal autoscaling works?
and how do I get a minimum of 2 pod replicas that can horizontally autoscale in autopilot?
GKE autopilot by default will not scale the replicas count beyond what you specified. This is the default behavior of Kubernetes in general.
If you want automatic autoscaling you have to use Horizental Pod Autoscaler (HPA) which is supported in Autopilot
If you deploy HPA to scale up and down your workload, Autopilot will scale up and down the nodes automatically and that's transparent for you as the nodes are managed by Google.
GKE autoscale only Nodes by default, while you have to take care of your HPA deployment scaling.
Autopilot: GKE provisions and manages the cluster's underlying
infrastructure, including nodes and node pools, giving you an
optimized cluster with a hands-off experience.
We need to configure both scaling options for deployment VPA and HPA.
Pre-configured: Autopilot handles all the scaling and configuring of
your nodes.
Default: You configure Horizontal pod autoscaling (HPA) You configure
Vertical Pod autoscaling (VPA)
GKE will manage the scaling up/down of your nodes in node pools, without worrying about the infrastructure you just have to start deploying the application with HPA & VPA auto-scaling.
You can read more about the options here : https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview#comparison

Azure Kubernetes Service - can the Cluster Autoscaler get triggered even if I don't set autoscaling explicitly?

I am deploying a service to Azure Kubernetes Service.
The Horizontal Pod Autoscaler scales the number of pods, whereas the Cluster Autoscaler scales the number of nodes based on the number of pending pods. If my understanding is correct, if I don't set up autoscaling in my deployment file, the HPA won't get triggered, and only one pod will run; therefore, the CA won't get triggered either.
My question is - is there a scenario in AKS where the CA would get triggered, even without setting autoscaling in my deployment file?
My question is - is there a scenario in AKS where the CA would get triggered, even without setting autoscaling in my deployment file?
Cluster autoscaler is typically used together with the horizontal pod autoscaler. The Horizontal Pod Autoscaler increases or decreases the number of pods based on application demand, and the cluster autoscaler adjusts the number of nodes as needed to run those additional pods accordingly.
If your deployment does not have the capacity to automatically scale up or down via the HPA, NOR you don't manually increase number of pods to the level where no additional pods can run due to insufficient resource in your nodes then the CA would not be triggered therefore the answer is NO.
You might find this document from official azure docs helpful also.

Azure Kubernetes Cluster Autoscaler - set memory threshold for scaling out nodes

In my 1 node AKS, I deploy multiple job resources (kind:jobs) that are terminated after the task is completed. I have enabled Cluster Autoscaler to add a second node when too many jobs are consuming the first node memory, however it scales out after a job/pod is unable to be created due to lack of memory.
In my job yaml I also defined the resource memory limit and request.
Is there a possibility to configure the Cluster Autoscaler to scale out proactively when it reaches a certain memory threshold (e.g., 70% of the node memory) not just when it cannot deploy a job/pod?
In Kubernetes you can find 3 Autoscaling Mechanisms: Horizontal Pod Autoscaler, Vertical Pod Autoscaler which both can be controlled by metrics usage and Cluster Autoscaler.
As per Cluster Autoscaler Documentation:
Cluster Autoscaler is a tool that automatically adjusts the size of the Kubernetes cluster when one of the following conditions is true:
there are pods that failed to run in the cluster due to insufficient resources.
there are nodes in the cluster that have been underutilized for an extended period of time and their pods can be placed on other existing nodes.
In AKS Cluster Autoscaler Documentation you can find note that CA is Kubernetes Component, not something AKS specific:
The cluster autoscaler is a Kubernetes component. Although the AKS cluster uses a virtual machine scale set for the nodes, don't manually enable or edit settings for scale set autoscale in the Azure portal or using the Azure CLI. Let the Kubernetes cluster autoscaler manage the required scale settings.
In Azure Documentation - About the cluster autoscaler you have information that AKS clusters can scale in one of two ways:
The cluster autoscaler watches for pods that can't be scheduled on nodes because of resource constraints. The cluster then automatically increases the number of nodes.
The horizontal pod autoscaler uses the Metrics Server in a Kubernetes cluster to monitor the resource demand of pods. If an application needs more resources, the number of pods is automatically increased to meet the demand.
On AKS you can adjust a bit your Autoscaler Profile to change some default values. More detail can be found in Using the autoscaler profile
I would suggest you to read the Understanding Kubernetes Cluster Autoscaling article which explains how CA works. Under Limitations part you have information:
The cluster autoscaler doesn’t take into account actual CPU/GPU/Memory usage, just resource requests and limits. Most teams overprovision at the pod level, so in practice we see aggressive upscaling and conservative downscaling.
Conclusion
Cluster Autoscaler doesn't consider actual resources usage. CA downscale or upscale might take a few minutes depending on cloud provider.

Kubernetes - Set Pod replication criteria based on memory and cpu usage

I am newbie to Kubernetes world. Please excuse if I am getting anything wrong.
I understand that pod replication is handled by k8s itself. We can also set cpu and memory usage for pods. But is it possible to change replication criteria based on memory and cpu usage? For example if I want to a pod to replicate when its memory/cpu usage reaches 70%.
Can we do it using metrics collected by Prometheus etc ?
You can use horizontal pod autoscaler. From the docs
The Horizontal Pod Autoscaler automatically scales the number of Pods
in a replication controller, deployment, replica set or stateful set
based on observed CPU utilization (or, with custom metrics support, on
some other application-provided metrics). Note that Horizontal Pod
Autoscaling does not apply to objects that can't be scaled, for
example, DaemonSets.
The Horizontal Pod Autoscaler is implemented as a Kubernetes API
resource and a controller. The resource determines the behavior of the
controller. The controller periodically adjusts the number of replicas
in a replication controller or deployment to match the observed
average CPU utilization to the target specified by user
An example from the doc
The following command will create a Horizontal Pod Autoscaler that maintains between 1 and 10 replicas of the Pods. HPA will increase and decrease the number of replicas to maintain an average CPU utilization across all Pods of 50%.
kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10

How to exclude some containers' metrics in Kubernetes Horizontal Pod Autoscaling

I have a pod running with two containers. The actual application is running in one of the containers (container-app) and the other one is the proxy container (container-proxy). I enabled the Horizontal Pod Autoscaler (HPA) for CPU usage percentage but as it states in HPA documentation, both of the container metrics are put in the calculation.
I want to exclude the CPU metrics of container-proxy from HPA calculation because I want only application container to be the scaling element for the pod.
Is there any way to exclude some containers metrics from HPA calculation for multi-container pods?
The cluster autoscaler works on a per-node pool basis. Horizontal Pod Autoscaler monitors CPU utilization of the pods and scales the number of replicas automatically. It provides immediate efficiency and capacity when needed, operates within user-defined minimum/maximum bounds, and allows users to set it and forget it. The design of the horizontal autoscaler is for pods not for the individual container.
HPA calculates pod cpu utilization as total cpu usage of all containers in pod divided by total request. It does not exclude containers metrics from HPA calculation if multiple containers are inside the pod.
Kubernetes 1.20+ supports container metrics, so as to target the utilisation per container, which would allow excluding a specific container of a pod from being considered.
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#container-resource-metrics
type: ContainerResource
containerResource:
name: cpu
container: application
target:
type: Utilization
averageUtilization: 60
Its an alpha feature though, so not available without turning on alpha features in Kubernetes.