Coq: rewriting under a pointwise_relation - coq

I want to rewrite s in the term Forall (P s) l but it fails with my current instance declarations. Did I miss something with the morphisms?
From Coq Require Import List Streams Setoid Morphisms.
Parameter T A : Type.
Parameter P : Stream T -> A -> Prop.
Add Parametric Morphism : P
with signature #EqSt T ==> #eq A ==> iff
as P_morph.
Admitted.
Add Parametric Morphism : (#Forall A)
with signature pointwise_relation A iff ==> (#eq (list A)) ==> iff
as Forall_morph.
Admitted.
Example problematic :
forall s1 s2 l,
EqSt s2 s1 ->
Forall (P s1) l ->
Forall (P s2) l.
Proof.
intros * Heq Hf.
Fail setoid_rewrite Heq.
Abort.

P's signature should also use pointwise_relation.
Add Parametric Morphism : P
with signature #EqSt T ==> pointwise_relation A iff
as P_morph.

Related

Coq: parametric rewriting under binders

I have a parametric relation myeq that I would like to rewrite under the predicate P whenever both are used with the same parameter. It works well if I declare the appropriate morphism:
From Coq Require Import Setoid Morphisms.
Parameter A B : Type.
Parameter myeq : A -> relation B.
Add Parametric Relation (a : A) : B (myeq a) as myeq_rel.
Parameter P : A -> B -> Prop.
Add Parametric Morphism (a : A) : (P a)
with signature (myeq a) ==> iff as P_morphism.
Admitted.
Lemma test1 b1 b2 :
(forall a, myeq a b1 b2) ->
exists a, P a b1.
Proof.
intro.
setoid_rewrite H. (* OK *)
Abort.
However it stops working when I try to apply a function, even registered as a morphism for myeq:
Parameter Op : B -> B.
Add Parametric Morphism (a : A) : Op
with signature (myeq a) ==> (myeq a) as op_morphism.
Admitted.
Lemma test2 b1 b2 :
(forall a, myeq a b1 b2) ->
exists a, P a (Op b1).
Proof.
intro.
setoid_rewrite H. (* not OK, why? *)
Abort.
Did I forget to declare something?

Functional extensionality for John Major's equality

Is functional extensionality provable for John Major's equality (possibly relying on safe axioms)?
Goal forall A (P:A->Type) (Q:A->Type)
(f:forall a, P a) (g:forall a, Q a),
(forall a, JMeq (f a) (g a)) -> JMeq f g.
If not, is it safe to assume it as an axiom?
It's provable from usual function extensionality.
Require Import Coq.Logic.FunctionalExtensionality.
Require Import Coq.Logic.JMeq.
Theorem jmeq_funext
A (P : A -> Type) (Q : A -> Type)
(f : forall a, P a)(g : forall a, Q a)
(h : forall a, JMeq (f a) (g a)) : JMeq f g.
Proof.
assert (pq_eq : P = Q).
apply functional_extensionality.
exact (fun a => match (h a) with JMeq_refl => eq_refl end).
induction pq_eq.
assert (fg_eq : f = g).
apply functional_extensionality_dep.
exact (fun a => JMeq_rect (fun ga => f a = ga) eq_refl (h a)).
induction fg_eq.
exact JMeq_refl.
Qed.

Paramcoq: Free theorems in Coq

How can I prove the following free theorem with the plugin Paramcoq?
Lemma id_free (f : forall A : Type, A -> A) (X : Type) (x : X), f X x = x.
If it is not possible, then what is the purpose of this plugin?
The plugin can generate the statement of parametricity for any type. You will still need to then declare it as an axiom or an assumption to actually use it:
Declare ML Module "paramcoq".
Definition idt := forall A:Type, A -> A.
Parametricity idt arity 1.
(* ^^^ This command defines the constant idt_P. *)
Axiom param_idt : forall f, idt_P f.
Lemma id_free (f : forall A : Type, A -> A) (X : Type) (x : X) : f X x = x.
Proof.
intros.
apply (param_idt f X (fun y => y = x) x).
reflexivity.
Qed.

How to use a custom induction principle in Coq?

I read that the induction principle for a type is just a theorem about a proposition P. So I constructed an induction principle for List based on the right (or reverse) list constructor .
Definition rcons {X:Type} (l:list X) (x:X) : list X :=
l ++ x::nil.
The induction principle itself is:
Definition true_for_nil {X:Type}(P:list X -> Prop) : Prop :=
P nil.
Definition true_for_list {X:Type} (P:list X -> Prop) : Prop :=
forall xs, P xs.
Definition preserved_by_rcons {X:Type} (P: list X -> Prop): Prop :=
forall xs' x, P xs' -> P (rcons xs' x).
Theorem list_ind_rcons:
forall {X:Type} (P:list X -> Prop),
true_for_nil P ->
preserved_by_rcons P ->
true_for_list P.
Proof. Admitted.
But now, I am having trouble using the theorem. I don't how to invoke it to achieve the same as the induction tactic.
For example, I tried:
Theorem rev_app_dist: forall {X} (l1 l2:list X), rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using list_ind_rcons.
But in the last line, I got:
Error: Cannot recognize an induction scheme.
What are the correct steps to define and apply a custom induction principle like list_ind_rcons?
Thanks
If one would like to preserve the intermediate definitions, then one could use the Section mechanism, like so:
Require Import Coq.Lists.List. Import ListNotations.
Definition rcons {X:Type} (l:list X) (x:X) : list X :=
l ++ [x].
Section custom_induction_principle.
Variable X : Type.
Variable P : list X -> Prop.
Hypothesis true_for_nil : P nil.
Hypothesis true_for_list : forall xs, P xs.
Hypothesis preserved_by_rcons : forall xs' x, P xs' -> P (rcons xs' x).
Fixpoint list_ind_rcons (xs : list X) : P xs. Admitted.
End custom_induction_principle.
Coq substitutes the definitions and list_ind_rcons has the needed type and induction ... using ... works:
Theorem rev_app_dist: forall {X} (l1 l2:list X),
rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using list_ind_rcons.
Abort.
By the way, this induction principle is present in the standard library (List module):
Coq < Check rev_ind.
rev_ind
: forall (A : Type) (P : list A -> Prop),
P [] ->
(forall (x : A) (l : list A), P l -> P (l ++ [x])) ->
forall l : list A, P l
What you did was mostly correct. The problem is that Coq has some trouble recognizing that what you wrote is an induction principle, because of the intermediate definitions. This, for instance, works just fine:
Theorem list_ind_rcons:
forall {X:Type} (P:list X -> Prop),
P nil ->
(forall x l, P l -> P (rcons l x)) ->
forall l, P l.
Proof. Admitted.
Theorem rev_app_dist: forall {X} (l1 l2:list X), rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using #list_ind_rcons.
I don't know if Coq not being able to automatically unfold the intermediate definitions should be considered a bug or not, but at least there is a workaround.

Implementing safe element retrieval by index from list in Coq

I'm trying to demonstrate the difference in code generation between Coq Extraction mechanism and MAlonzo compiler in Agda. I came up with this simple example in Agda:
data Nat : Set where
zero : Nat
succ : Nat → Nat
data List (A : Set) : Set where
nil : List A
cons : A → List A → List A
length : ∀ {A} → List A → Nat
length nil = zero
length (cons _ xs) = succ (length xs)
data Fin : Nat → Set where
finzero : ∀ {n} → Fin (succ n)
finsucc : ∀ {n} → Fin n → Fin (succ n)
elemAt : ∀ {A} (xs : List A) → Fin (length xs) → A
elemAt nil ()
elemAt (cons x _) finzero = x
elemAt (cons _ xs) (finsucc n) = elemAt xs n
Direct translation to Coq (with absurd pattern emulation) yields:
Inductive Nat : Set :=
| zero : Nat
| succ : Nat -> Nat.
Inductive List (A : Type) : Type :=
| nil : List A
| cons : A -> List A -> List A.
Fixpoint length (A : Type) (xs : List A) {struct xs} : Nat :=
match xs with
| nil => zero
| cons _ xs' => succ (length _ xs')
end.
Inductive Fin : Nat -> Set :=
| finzero : forall n : Nat, Fin (succ n)
| finsucc : forall n : Nat, Fin n -> Fin (succ n).
Lemma finofzero : forall f : Fin zero, False.
Proof. intros a; inversion a. Qed.
Fixpoint elemAt (A : Type) (xs : List A) (n : Fin (length _ xs)) : A :=
match xs, n with
| nil, _ => match finofzero n with end
| cons x _, finzero _ => x
| cons _ xs', finsucc m n' => elemAt _ xs' n' (* fails *)
end.
But the last case in elemAt fails with:
File "./Main.v", line 26, characters 46-48:
Error:
In environment
elemAt : forall (A : Type) (xs : List A), Fin (length A xs) -> A
A : Type
xs : List A
n : Fin (length A xs)
a : A
xs' : List A
n0 : Fin (length A (cons A a xs'))
m : Nat
n' : Fin m
The term "n'" has type "Fin m" while it is expected to have type
"Fin (length A xs')".
It seems that Coq does not infer succ m = length A (cons A a xs'). What should I
tell Coq so it would use this information? Or am I doing something completely senseless?
Doing pattern matching is the equivalent of using the destruct tactic.
You won't be able to prove finofzero directly using destruct.
The inversion tactic automatically generates some equations before doing what destruct does.
Then it tries to do what discriminate does. The result is really messy.
Print finofzero.
To prove something like fin zero -> P you should change it to fin n -> n = zero -> P first.
To prove something like list nat -> P (more usually forall l : list nat, P l) you don't need to change it to list A -> A = nat -> P, because list's only argument is a parameter in its definition.
To prove something like S n <= 0 -> False you should change it to S n1 <= n2 -> n2 = 0 -> False first, because the first argument of <= is a parameter while the second one isn't.
In a goal f x = f y -> P (f y), to rewrite with the hypothesis you first need to change the goal to f x = z -> f y = z -> P z, and only then will you be able to rewrite with the hypothesis using induction, because the first argument of = (actually the second) is a parameter in the definition of =.
Try defining <= without parameters to see how the induction principle changes.
In general, before using induction on a predicate you should make sure it's arguments are variables. Otherwise information might be lost.
Conjecture zero_succ : forall n1, zero = succ n1 -> False.
Conjecture succ_succ : forall n1 n2, succ n1 = succ n2 -> n1 = n2.
Lemma finofzero : forall n1, Fin n1 -> n1 = zero -> False.
Proof.
intros n1 f1.
destruct f1.
intros e1.
eapply zero_succ.
eapply eq_sym.
eapply e1.
admit.
Qed.
(* Use the Show Proof command to see how the tactics manipulate the proof term. *)
Definition elemAt' : forall (A : Type) (xs : List A) (n : Nat), Fin n -> n = length A xs -> A.
Proof.
fix elemAt 2.
intros A xs.
destruct xs as [| x xs'].
intros n f e.
destruct (finofzero f e).
destruct 1.
intros e.
eapply x.
intros e.
eapply elemAt.
eapply H.
eapply succ_succ.
eapply e.
Defined.
Print elemAt'.
Definition elemAt : forall (A : Type) (xs : List A), Fin (length A xs) -> A :=
fun A xs f => elemAt' A xs (length A xs) f eq_refl.
CPDT has more about this.
Maybe things would be clearer if at the end of a proof Coq performed eta reduction and beta/zeta reduction (wherever variables occur at most once in scope).
I think your problem is similar to Dependent pattern matching in coq . Coq's match does not infer much, so you have to help it by providing the equality by hand.