I am using Spark Structured Streaming to read messages from multiple topics in kafka.
I am facing below error:
java.lang.NoSuchMethodError: org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.setMinEvictableIdleTime(Ljava/time/Duration;)V
Below are my maven dependencies I am using,
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>untitled</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>A Camel Scala Route</name>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
</properties>
<dependencyManagement>
<dependencies>
<!-- Camel BOM -->
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-parent</artifactId>
<version>2.25.4</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
</dependency>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-scala</artifactId>
</dependency>
<!-- scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.13.8</version>
</dependency>
<dependency>
<groupId>org.scala-lang.modules</groupId>
<artifactId>scala-xml_2.13</artifactId>
<version>2.1.0</version>
</dependency>
<!-- logging -->
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<scope>runtime</scope>
</dependency>
<!--spark-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.13</artifactId>
<version>3.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.13</artifactId>
<version>3.3.0</version>
</dependency>
<!--spark Streaming kafka-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.13</artifactId>
<version>3.3.0</version>
</dependency>
<!--kafka-->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.13</artifactId>
<version>3.2.0</version>
</dependency>
<!--jackson-->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.13.3</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.13.3</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.13.3</version>
</dependency>
<!-- testing -->
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<defaultGoal>install</defaultGoal>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<!-- the Maven compiler plugin will compile Java source files -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId>
<version>3.0.2</version>
<configuration>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<!-- the Maven Scala plugin will compile Scala source files -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<!-- configure the eclipse plugin to generate eclipse project descriptors for a Scala project -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<version>2.10</version>
<configuration>
<projectnatures>
<projectnature>org.scala-ide.sdt.core.scalanature</projectnature>
<projectnature>org.eclipse.jdt.core.javanature</projectnature>
</projectnatures>
<buildcommands>
<buildcommand>org.scala-ide.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<classpathContainers>
<classpathContainer>org.scala-ide.sdt.launching.SCALA_CONTAINER</classpathContainer>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
</classpathContainers>
<excludes>
<exclude>org.scala-lang:scala-library</exclude>
<exclude>org.scala-lang:scala-compiler</exclude>
</excludes>
<sourceIncludes>
<sourceInclude>**/*.scala</sourceInclude>
<sourceInclude>**/*.java</sourceInclude>
</sourceIncludes>
</configuration>
</plugin>
<!-- allows the route to be run via 'mvn exec:java' -->
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.6.0</version>
<configuration>
<mainClass>org.example.MyRouteMain</mainClass>
</configuration>
</plugin>
</plugins>
</build>
</project>
Scala Version: 2.13.8
Spark Version: 3.3.0
This my Code snippet to read from Kafka topics:
object consumerMain {
val log : Logger = Logger.getLogger(controller.driver.getClass)
val config: Map[String, String]=Map[String,String](
"kafka.bootstrap.servers" -> bootstrapServer,
"startingOffsets" -> "earliest",
"kafka.security.protocol" -> security_protocol,
"kafka.ssl.truststore.location" -> truststore_location,
"kafka.ssl.truststore.password" -> password,
"kafka.ssl.keystore.location" -> keystore_location,
"kafka.ssl.keystore.password" -> password,
"kafka.ssl.key.password"-> password,
"kafka.ssl.endpoint.identification.algorithm"-> ""
)
def main(args: Array[String]) : Unit ={
log.info("SPARKSESSION CREATED!!!")
val spark = SparkSession.builder()
.appName("kafka-sample-consumer")
.master("local")
.getOrCreate()
log.info("READING MESSAGES FROM KAFKA!!!")
val kafkaMsg = spark
.readStream
.format("Kafka")
.options(config)
.option("kafka.group.id", group_id)
.option("subscribe", "sample_topic_T")
.load()
kafkaMsg.printSchema()
kafkaMsg.writeStream
.format("console")
//.outputMode("append")
.start()
.awaitTermination()
}
}
Below, I am able to see the kafka proeprties I have set in the logs printed on the console:
[ main] StateStoreCoordinatorRef INFO Registered StateStoreCoordinator endpoint
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler#6e00837f{/StreamingQuery,null,AVAILABLE,#Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler#6a5dd083{/StreamingQuery/json,null,AVAILABLE,#Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler#1e6bd263{/StreamingQuery/statistics,null,AVAILABLE,#Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler#635ff2a5{/StreamingQuery/statistics/json,null,AVAILABLE,#Spark}
[ main] ContextHandler INFO Started o.s.j.s.ServletContextHandler#62735b13{/static/sql,null,AVAILABLE,#Spark}
[ main] ResolveWriteToStream WARN Temporary checkpoint location created which is deleted normally when the query didn't fail: C:\Users\xyz\AppData\Local\Temp\temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb. If it's required to delete it under any circumstances, please set spark.sql.streaming.forceDeleteTempCheckpointLocation to true. Important to know deleting temp checkpoint folder is best effort.
[ main] ResolveWriteToStream INFO Checkpoint root C:\Users\xyz\AppData\Local\Temp\temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb resolved to file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb.
[ main] ResolveWriteToStream WARN spark.sql.adaptive.enabled is not supported in streaming DataFrames/Datasets and will be disabled.
[ main] CheckpointFileManager INFO Writing atomically to file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/metadata using temp file file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/.metadata.c2b5aa2a-2a86-4931-a4f0-bbdaae8c3d5f.tmp
[ main] CheckpointFileManager INFO Renamed temp file file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/.metadata.c2b5aa2a-2a86-4931-a4f0-bbdaae8c3d5f.tmp to file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb/metadata
[ main] MicroBatchExecution INFO Starting [id = 54eadb58-a957-4f8d-b67e-24ef6717482c, runId = ceb06ba5-1ce6-4ccd-bfe9-b4e24fd497a6]. Use file:/C:/Users/xyz/AppData/Local/Temp/temporary-c2ca1d2c-2c8d-4961-a1bd-1881bc00e0bb to store the query checkpoint.
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] MicroBatchExecution INFO Reading table [org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaTable#5efc8880] from DataSourceV2 named 'Kafka' [org.apache.spark.sql.kafka010.KafkaSourceProvider#2703aebd]
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] KafkaSourceProvider WARN Kafka option 'kafka.group.id' has been set on this query, it is
not recommended to set this option. This option is unsafe to use since multiple concurrent
queries or sources using the same group id will interfere with each other as they are part
of the same consumer group. Restarted queries may also suffer interference from the
previous run having the same group id. The user should have only one query per group id,
and/or set the option 'kafka.session.timeout.ms' to be very small so that the Kafka
consumers from the previous query are marked dead by the Kafka group coordinator before the
restarted query starts running.
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] MicroBatchExecution INFO Starting new streaming query.
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] MicroBatchExecution INFO Stream started from {}
[5-1ce6-4ccd-bfe9-b4e24fd497a6]] ConsumerConfig INFO ConsumerConfig values:
auto.commit.interval.ms = 5000
auto.offset.reset = earliest
bootstrap.servers = [localhost:9092, localhost: 9093]
check.crcs = true
client.dns.lookup = default
client.id =
connections.max.idle.ms = 540000
default.api.timeout.ms = 60000
enable.auto.commit = false
exclude.internal.topics = true
fetch.max.bytes = 52428800
fetch.max.wait.ms = 500
fetch.min.bytes = 1
group.id = kafka-message-test-group
heartbeat.interval.ms = 3000
interceptor.classes = []
internal.leave.group.on.close = true
isolation.level = read_uncommitted
key.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
max.partition.fetch.bytes = 1048576
max.poll.interval.ms = 300000
max.poll.records = 1
metadata.max.age.ms = 300000
metric.reporters = []
metrics.num.samples = 2
metrics.recording.level = INFO
metrics.sample.window.ms = 30000
partition.assignment.strategy = [class org.apache.kafka.clients.consumer.RangeAssignor]
receive.buffer.bytes = 65536
reconnect.backoff.max.ms = 1000
reconnect.backoff.ms = 50
request.timeout.ms = 30000
retry.backoff.ms = 100
sasl.client.callback.handler.class = null
sasl.jaas.config = null
sasl.kerberos.kinit.cmd = /usr/bin/kinit
sasl.kerberos.min.time.before.relogin = 60000
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
sasl.kerberos.ticket.renew.window.factor = 0.8
sasl.login.callback.handler.class = null
sasl.login.class = null
sasl.login.refresh.buffer.seconds = 300
sasl.login.refresh.min.period.seconds = 60
sasl.login.refresh.window.factor = 0.8
sasl.login.refresh.window.jitter = 0.05
sasl.mechanism = GSSAPI
security.protocol = SSL
send.buffer.bytes = 131072
session.timeout.ms = 10000
ssl.cipher.suites = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
ssl.endpoint.identification.algorithm =
ssl.key.password = [hidden]
ssl.keymanager.algorithm = SunX509
ssl.keystore.location = src/main/resources/consumer_inlet/keystore.jks
ssl.keystore.password = [hidden]
ssl.keystore.type = JKS
ssl.protocol = TLS
ssl.provider = null
ssl.secure.random.implementation = null
ssl.trustmanager.algorithm = PKIX
ssl.truststore.location = src/main/resources/consumer_inlet/truststore.jks
ssl.truststore.password = [hidden]
ssl.truststore.type = JKS
value.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
The following error I am getting while running the consumerMain:
Exception in thread "main" org.apache.spark.sql.streaming.StreamingQueryException: Writing job aborted
=== Streaming Query ===
Identifier: [id = 54eadb58-a957-4f8d-b67e-24ef6717482c, runId = ceb06ba5-1ce6-4ccd-bfe9-b4e24fd497a6]
Current Committed Offsets: {}
Current Available Offsets: {KafkaV2[Subscribe[sample_topic_T]]: {"clinical_sample_T":{"0":155283144,"1":155233229}}}
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
WriteToMicroBatchDataSource org.apache.spark.sql.execution.streaming.ConsoleTable$#4f9c824, 54eadb58-a957-4f8d-b67e-24ef6717482c, Append
+- StreamingDataSourceV2Relation [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13], org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaScan#135a05da, KafkaV2[Subscribe[sample_topic_T]]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:330)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:208)
Caused by: org.apache.spark.SparkException: Writing job aborted
at org.apache.spark.sql.errors.QueryExecutionErrors$.writingJobAbortedError(QueryExecutionErrors.scala:749)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:409)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2$(WriteToDataSourceV2Exec.scala:353)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.writeWithV2(WriteToDataSourceV2Exec.scala:302)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.run(WriteToDataSourceV2Exec.scala:313)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:43)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3868)
at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:3120)
at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:3858)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:510)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3856)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3856)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:3120)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$17(MicroBatchExecution.scala:663)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$16(MicroBatchExecution.scala:658)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:375)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:373)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runBatch(MicroBatchExecution.scala:658)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:255)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.scala:18)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:375)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:373)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:218)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:67)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:212)
at org.apache.spark.sql.execution.streaming.StreamExecution.$anonfun$runStream$1(StreamExecution.scala:307)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.scala:18)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:285)
... 1 more
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0) (LHTU05CG050CC8Q.ms.ds.uhc.com executor driver): java.lang.NoSuchMethodError: org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.setMinEvictableIdleTime(Ljava/time/Duration;)V
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.init(InternalKafkaConsumerPool.scala:186)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.<init>(InternalKafkaConsumerPool.scala:163)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool.<init>(InternalKafkaConsumerPool.scala:54)
at org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$.<clinit>(KafkaDataConsumer.scala:637)
at org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.<init>(KafkaBatchPartitionReader.scala:53)
at org.apache.spark.sql.kafka010.KafkaBatchReaderFactory$.createReader(KafkaBatchPartitionReader.scala:41)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.advanceToNextIter(DataSourceRDD.scala:84)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$9.hasNext(Iterator.scala:576)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$1(WriteToDataSourceV2Exec.scala:435)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1538)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:480)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.$anonfun$writeWithV2$2(WriteToDataSourceV2Exec.scala:381)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2672)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2608)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2607)
at scala.collection.immutable.List.foreach(List.scala:333)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2607)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1182)
at scala.Option.foreach(Option.scala:437)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2860)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2791)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:952)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2228)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:377)
... 42 more
Caused by: java.lang.NoSuchMethodError: org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.setMinEvictableIdleTime(Ljava/time/Duration;)V
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.init(InternalKafkaConsumerPool.scala:186)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool$PoolConfig.<init>(InternalKafkaConsumerPool.scala:163)
at org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumerPool.<init>(InternalKafkaConsumerPool.scala:54)
at org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$.<clinit>(KafkaDataConsumer.scala:637)
at org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.<init>(KafkaBatchPartitionReader.scala:53)
at org.apache.spark.sql.kafka010.KafkaBatchReaderFactory$.createReader(KafkaBatchPartitionReader.scala:41)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.advanceToNextIter(DataSourceRDD.scala:84)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:63)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$9.hasNext(Iterator.scala:576)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$1(WriteToDataSourceV2Exec.scala:435)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1538)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:480)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.$anonfun$writeWithV2$2(WriteToDataSourceV2Exec.scala:381)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:136)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
I am running this in intellij
I cannot reproduce the error (using latest IntelliJ Ultimate), but here's the POM and code
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cricket.jomoore</groupId>
<artifactId>scala</artifactId>
<version>0.1-SNAPSHOT</version>
<name>SOReady4Spark</name>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.compat.version>2.13</scala.compat.version>
<scala.version>${scala.compat.version}.8</scala.version>
<spark.version>3.3.0</spark.version>
<spec2.version>4.2.0</spec2.version>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-bom</artifactId>
<version>2.18.0</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.compat.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.compat.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_${scala.compat.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- Test -->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>5.8.2</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<!-- see http://davidb.github.com/scala-maven-plugin -->
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>4.7.1</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.0.0-M7</version>
</plugin>
</plugins>
</build>
</project>
<scope>provided</scope> tags are needed for when you actually deploy Spark code to a real Spark cluster. And for that, you also need to configure IntelliJ run config.
package cricketeer.one;
import org.apache.kafka.clients.consumer.OffsetResetStrategy
import org.apache.spark.sql
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.OutputMode
import org.apache.spark.sql.types.{DataType, DataTypes}
import org.slf4j.LoggerFactory
object KafkaTest extends App {
val logger = LoggerFactory.getLogger(getClass)
/**
* For testing output to a console.
*
* #param df A Streaming DataFrame
* #return A DataStreamWriter
*/
private def streamToConsole(df: sql.DataFrame) = {
df.writeStream.outputMode(OutputMode.Append()).format("console")
}
private def getKafkaDf(spark: SparkSession, bootstrap: String, topicPattern: String, offsetResetStrategy: OffsetResetStrategy = OffsetResetStrategy.EARLIEST) = {
spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", bootstrap)
.option("subscribe", topicPattern)
.option("startingOffsets", offsetResetStrategy.toString.toLowerCase())
.load()
}
val spark = SparkSession.builder()
.appName("Kafka Test")
.master("local[*]")
.getOrCreate()
import spark.implicits._
val kafkaBootstrap = "localhost:9092"
val df = getKafkaDf(spark, kafkaBootstrap, "input-topic")
streamToConsole(
df.select($"value".cast(DataTypes.StringType))
).start().awaitTermination()
}
src/main/resources/log4j2.xml
<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
<Appenders>
<Console name="STDOUT" target="SYSTEM_OUT">
<PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>
</Console>
</Appenders>
<Loggers>
<Logger name="org.apache.kafka.clients.consumer.internals.Fetcher" level="warn">
<AppenderRef ref="STDOUT"/>
</Logger>
<Root level="info">
<AppenderRef ref="STDOUT"/>
</Root>
</Loggers>
</Configuration>
I downgraded the version of spark from 3.3.0 to 3.2.2 with the Scala version 2.13.8 remaining the same. For me, it seems the Scala version 2.13 was not compatible with Spark version 3.3.0 . For now I am able to write the Avro data to a file.
And Thanks to #OneCricketeer for your help and support so far!
I hit the same issue with Spark 3.3.0. I did some deep dive and finally found out the root cause: Spark 3.3.0 has built-in dependency on commons-pools v.1.5.4 (commons-pool-1.5.4.jar) while this structure streaming library relies on v2.11.1 which replaced setMinEvictableIdleTimeMillis with setMinEvictableIdleTime. Thus the resolution is to add commons-pool2-2.11.1.jar to your Spark jars folder. This jar can be downloaded from Maven central https://repo1.maven.org/maven2/org/apache/commons/commons-pool2/2.11.1/commons-pool2-2.11.1.jar.
I've documented the details on the page if you want to learn more:
https://kontext.tech/article/1178/javalangnosuchmethoderror-poolconfigsetminevictableidletime
Related
I have tried to generate the java code from wsdl2java by using cxf-codegen-plugin .
Code was generated and can see the response in my eclipse test class(tried to call few methods and getting result properly).
But when I created jar of this code and moved to Weblogic server classpath (I have few jsp pages calling this wsdl2java generated code), It calling my methods properly but every time getting Runtime exception.
Note: I have moved all the dependent jars too inside weblogic classpath.
Below is the Exception snapshot:
java.lang.RuntimeException: MASM0015: Class [ com.sun.xml.ws.assembler.jaxws.HandlerTubeFactory ] does not implement [ com.sun.xml.internal.ws.assembler.dev.TubeFactory ] interface
at com.sun.xml.internal.ws.assembler.TubeCreator.<init>(TubeCreator.java:63)
at com.sun.xml.internal.ws.assembler.TubelineAssemblyController.initializeTubeCreators(TubelineAssemblyController.java:116)
at com.sun.xml.internal.ws.assembler.TubelineAssemblyController.getTubeCreators(TubelineAssemblyController.java:79)
at com.sun.xml.internal.ws.assembler.MetroTubelineAssembler.createClient(MetroTubelineAssembler.java:103)
at com.sun.xml.internal.ws.client.Stub.createPipeline(Stub.java:328)
at com.sun.xml.internal.ws.client.Stub.<init>(Stub.java:295)
at com.sun.xml.internal.ws.client.Stub.<init>(Stub.java:228)
at com.sun.xml.internal.ws.client.Stub.<init>(Stub.java:243)
at com.sun.xml.internal.ws.client.sei.SEIStub.<init>(SEIStub.java:84)
at com.sun.xml.internal.ws.client.WSServiceDelegate.getStubHandler(WSServiceDelegate.java:814)
at com.sun.xml.internal.ws.client.WSServiceDelegate.createEndpointIFBaseProxy(WSServiceDelegate.java:803)
at com.sun.xml.internal.ws.client.WSServiceDelegate.getPort(WSServiceDelegate.java:436)
at com.sun.xml.internal.ws.client.WSServiceDelegate.getPort(WSServiceDelegate.java:404)
at com.sun.xml.internal.ws.client.WSServiceDelegate.getPort(WSServiceDelegate.java:386)
at javax.xml.ws.Service.getPort(Service.java:119)
at customeruserextv2.loginservice.LoginService.getLoginServiceSoap(LoginService.java:93)
at com.ncs.wcm.LoginHelper.login(LoginHelper.java:50)
at jsp_servlet._jsp._cs_deployed._testportal.__userlogin._jspService(__userlogin.java:322)
at weblogic.servlet.jsp.JspBase.service(JspBase.java:35)
at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:295)
at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:260)
at weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:137)
at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:353)
at weblogic.servlet.internal.ServletStubImpl.onAddToMapException(ServletStubImpl.java:492)
at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:379)
at weblogic.servlet.internal.TailFilter.doFilter(TailFilter.java:25)
at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:78)
at org.apache.logging.log4j.web.Log4jServletFilter.doFilter(Log4jServletFilter.java:64)
at weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:78)
at weblogic.servlet.internal.RequestDispatcherImpl.invokeServlet(RequestDispatcherImpl.java:637)
at weblogic.servlet.internal.RequestDispatcherImpl.include(RequestDispatcherImpl.java:508)
Below is the method which I am calling and getting error:
public static boolean login(String userName, String password) {
URL wsdlURL = LoginService.WSDL_LOCATION;
LoginService ss = new LoginService(wsdlURL, SERVICE_NAME);
LoginServiceSoap port = ss.getLoginServiceSoap(); // This is the line where throwing error
return port.login(userName, password);
}
Below my POM.xml
<description>LoginServiceWcm</description>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.3.3</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.3.1</version>
<type>jar</type>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
<version>3.0.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
<version>1.2</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<finalName>LoginService</finalName>
<plugins>
<plugin>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId>
<version>3.2.7</version>
<executions>
<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>
<sourceRoot>${project.build.directory}/generated/cxf</sourceRoot>
<wsdlOptions>
<wsdlOption>
<wsdl>${basedir}/src/main/resources/wsdl/login.wsdl</wsdl>
<wsdlLocation>classpath:wsdl/login.wsdl</wsdlLocation>
<extraargs>
<extraarg>-client</extraarg>
</extraargs>
</wsdlOption>
</wsdlOptions>
</configuration>
<goals>
<goal>wsdl2java</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
The following code is meant to read messages from Kafka using Spark Submit.
The code executes and terminates without errors but reads no messages(The output file is empty and the log inside rdd.foreachPartition does not print).Please indicate what i am missing.
package hive;
import java.net.URI;
import java.util.*;
import org.apache.spark.SparkConf;
import org.apache.spark.TaskContext;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.StreamingContext;
import org.apache.spark.streaming.api.java.*;
import org.apache.spark.streaming.kafka010.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hadoop.fs.FileSystem;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import scala.Tuple2;
public class SparkKafka1 {
private static final Logger logger = LoggerFactory.getLogger(SparkKafka1.class);
public static void main(String[] args) {
Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "http://192.168.1.214:9092,http://192.168.1.214:9093");
kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
kafkaParams.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
//kafkaParams.put("group.id", "StreamingGroup");
kafkaParams.put("auto.offset.reset", "smallest");
kafkaParams.put("enable.auto.commit", false);
String user = "ankit";
String password = "noida#123";
Collection<String> topics = Arrays.asList("StreamingTopic");
SparkConf conf = new SparkConf().setMaster("spark://192.168.1.214:7077")
.set("spark.deploy.mode", "cluster").set("user",user)
.set("password",password).set("spark.driver.memory", "1g").set("fs.defaultFS", "hdfs://192.168.1.214:9000")
.setAppName("NetworkWordCount");
JavaStreamingContext streamingContext = new JavaStreamingContext(conf,new Duration(500));
JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)
);
stream.mapToPair(record -> new Tuple2<>(record.key(), record.value()));
stream.foreachRDD(rdd ->{
rdd.foreachPartition(item ->{
while (item.hasNext()) {
System.out.println(">>>>>>>>>>>>>>>>>>>>>>>>>>>"+item.next());
logger.info("next item="+item.next());
}
});
});
logger.info("demo log="+stream.count());
stream.foreachRDD(rdd -> {
OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
rdd.foreachPartition(consumerRecords -> {
OffsetRange o = offsetRanges[TaskContext.get().partitionId()];
System.out.println(
o.topic() + " " + o.partition() + " " + o.fromOffset() + " " + o.untilOffset());
rdd.saveAsTextFile("/home/ankit/work/warehouse/Manish.txt");
logger.info("tokenizing inside processElement method");
});
});
}
}
The following is the pom.xml:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>SparkTest</groupId>
<artifactId>SparkTest</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>SparkTest</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.scala-lang/scala-library -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
<scope>provided </scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
<scope>provided </scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.1.0</version>
<scope>provided </scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.1.0</version>
<scope>provided </scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>2.1.0</version>
<scope>provided </scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>1.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-auth</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<!-- or whatever version you use -->
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/LICENSE</exclude>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
<filter>
<artifact>org.apache.spark:spark-streaming-kafka-0-10_2.11</artifact>
<includes> <include>org/apache/spark/streaming/kafka010/**</include>
</includes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
The following command submits the job:
./spark-submit --class hive.SparkKafka1 --master spark://192.168.1.214:6066 --deploy-mode cluster --supervise --executor-memory 2G --total-executor-cores 4 hdfs://192.168.1.214:9000/input/SparkTest-0.0.1-SNAPSHOT.jar
i haven't run this program to see but it seems you are using kafka 0.10.2 and smallest is deprecated please use earliest instead.
You need add this two commands;
streamingContext.start();//start this app.
streamingContext.awaitTermination();//prevent this app close.
And I see you use http* value for bootstrap.servers. Delete the http prefix.
By the way, if you set spark conf in the code. It's useless set the same value in the command line.
Just check it. If the error exist as before. please let me know.
I'm using maven with scala archetype. I'm getting that error:
“value $ is not a member of StringContext”
I already tried to add several things in pom.xml, but nothing worked very well...
My code:
import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
// To see less warnings
import org.apache.log4j._
Logger.getLogger("org").setLevel(Level.ERROR)
// Start a simple Spark Session
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().getOrCreate()
// Prepare training and test data.
val data = spark.read.option("header","true").option("inferSchema","true").format("csv").load("USA_Housing.csv")
// Check out the Data
data.printSchema()
// See an example of what the data looks like
// by printing out a Row
val colnames = data.columns
val firstrow = data.head(1)(0)
println("\n")
println("Example Data Row")
for(ind <- Range(1,colnames.length)){
println(colnames(ind))
println(firstrow(ind))
println("\n")
}
////////////////////////////////////////////////////
//// Setting Up DataFrame for Machine Learning ////
//////////////////////////////////////////////////
// A few things we need to do before Spark can accept the data!
// It needs to be in the form of two columns
// ("label","features")
// This will allow us to join multiple feature columns
// into a single column of an array of feautre values
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
// Rename Price to label column for naming convention.
// Grab only numerical columns from the data
val df = data.select(data("Price").as("label"),$"Avg Area Income",$"Avg Area House Age",$"Avg Area Number of Rooms",$"Area Population")
// An assembler converts the input values to a vector
// A vector is what the ML algorithm reads to train a model
// Set the input columns from which we are supposed to read the values
// Set the name of the column where the vector will be stored
val assembler = new VectorAssembler().setInputCols(Array("Avg Area Income","Avg Area House Age","Avg Area Number of Rooms","Area Population")).setOutputCol("features")
// Use the assembler to transform our DataFrame to the two columns
val output = assembler.transform(df).select($"label",$"features")
// Create a Linear Regression Model object
val lr = new LinearRegression()
// Fit the model to the data
// Note: Later we will see why we should split
// the data first, but for now we will fit to all the data.
val lrModel = lr.fit(output)
// Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
// Summarize the model over the training set and print out some metrics!
// Explore this in the spark-shell for more methods to call
val trainingSummary = lrModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
trainingSummary.residuals.show()
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"MSE: ${trainingSummary.meanSquaredError}")
println(s"r2: ${trainingSummary.r2}")
and my pom.xml is that:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>test</groupId>
<artifactId>outrotest</artifactId>
<version>1.0-SNAPSHOT</version>
<name>${project.artifactId}</name>
<description>My wonderfull scala app</description>
<inceptionYear>2015</inceptionYear>
<licenses>
<license>
<name>My License</name>
<url>http://....</url>
<distribution>repo</distribution>
</license>
</licenses>
<properties>
<maven.compiler.source>1.6</maven.compiler.source>
<maven.compiler.target>1.6</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.11.5</scala.version>
<scala.compat.version>2.11</scala.compat.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.0.2</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.11</artifactId>
<version>1.5.0</version>
</dependency>
<!-- Test -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs2</groupId>
<artifactId>specs2-junit_${scala.compat.version}</artifactId>
<version>2.4.16</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs2</groupId>
<artifactId>specs2-core_${scala.compat.version}</artifactId>
<version>2.4.16</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.scalatest</groupId>
<artifactId>scalatest_${scala.compat.version}</artifactId>
<version>2.2.4</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<!-- see http://davidb.github.com/scala-maven-plugin -->
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.0</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<!--<arg>-make:transitive</arg>-->
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18.1</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<!-- If you have classpath issue like NoDefClassError,... -->
<!-- useManifestOnlyJar>false</useManifestOnlyJar -->
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>
</plugins>
</build>
</project>
I have no idea about how to fix it. Does anybody have any idea?
Add this.. it will work
val spark = SparkSession.builder().getOrCreate()
import spark.implicits._ // << add this
You can use the col function instead just import it like this :
import org.apache.spark.sql.functions.col
And then change the $"column" to col("column")
Hope it helps
#Apurva's answer initially worked for me in that the error vanished from IntelliJ
But then it resulted in "Could not find implicit value for spark" during sbt compile phase
I found a strange work-around by importing spark.implicits._ from SparkSession referenced from DataFrame instead of one obtained by getOrCreate
import df.sparkSession.implicits._
where df is a DataFrame
This could be because my code was placed inside a case class that received an implicit val spark: SparkSession parameter; but I'm not really sure as to why this fix worked for me
I'm using spark 1.6. The above answers are great but unfortunately doesn't work in 1.6
The way I solved it was by using df.col("column-name")
val df = df_mid
.withColumn("dt", date_format(df_mid.col("timestamp"), "yyyy-MM-dd"))
.filter("dt != 'null'")
java.lang.NoSuchMethodError: scala.reflect.api.JavaUniverse.runtimeMirror(Ljava/lang/ClassLoader;)Lscala/reflect/api/JavaMirrors$JavaMirror;
at org.elasticsearch.spark.serialization.ReflectionUtils$.org$elasticsearch$spark$serialization$ReflectionUtils$$checkCaseClass(ReflectionUtils.scala:42)
at org.elasticsearch.spark.serialization.ReflectionUtils$$anonfun$checkCaseClassCache$1.apply(ReflectionUtils.scala:84)
it is seems scala version uncompatible,but i see the document of spark ,spark 2.10 and scala 2.11.8 is ok.
that is my pom.xml and that is just a test for spark to write to elasticsearch with es-hadoop,i have no idea how to solve this exception. `
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.jhTian</groupId>
<artifactId>sparkLink</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>${project.artifactId}</name>
<description>My wonderfull scala app</description>
<inceptionYear>2015</inceptionYear>
<licenses>
<license>
<name>My License</name>
<url>http://....</url>
<distribution>repo</distribution>
</license>
</licenses>
<properties>
<encoding>UTF-8</encoding>
<scala.version>2.11.8</scala.version>
<scala.compat.version>2.11</scala.compat.version>
</properties>
<repositories>
<repository>
<id>ainemo</id>
<name>xylink</name>
<url>http://10.170.209.180:8081/nexus/content/groups/public/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.4</version><!-- 2.64 -->
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!--<dependency>-->
<!--<groupId>org.scala-lang</groupId>-->
<!--<artifactId>scala-compiler</artifactId>-->
<!--<version>${scala.version}</version>-->
<!--</dependency>-->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-reflect</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.4</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-hadoop</artifactId>
<version>5.3.0 </version>
</dependency>
<!-- Test -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.10</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs2</groupId>
<artifactId>specs2-core_${scala.compat.version}</artifactId>
<version>2.4.16</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.scalatest</groupId>
<artifactId>scalatest_${scala.compat.version}</artifactId>
<version>2.2.4</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>'
this is my code
import org.apache.spark.{SparkConf, SparkContext}
import org.elasticsearch.spark._
/**
* Created by jhTian on 2017/4/19.
*/
object EsWrite {
def main(args: Array[String]) {
val sparkConf = new SparkConf()
.set("es.nodes", "1.1.1.1")
.set("es.port", "9200")
.set("es.index.auto.create", "true")
.setAppName("es-spark-demo")
val sc = new SparkContext(sparkConf)
val job1 = Job("C开发工程师","http://job.c.com","c公司","10000")
val job2 = Job("C++开发工程师","http://job.c++.com","c++公司","10000")
val job3 = Job("C#开发工程师","http://job.c#.com","c#公司","10000")
val job4 = Job("Java开发工程师","http://job.java.com","java公司","10000")
val job5 = Job("Scala开发工程师","http://job.scala.com","java公司","10000")
// val numbers = Map("one" -> 1, "two" -> 2, "three" -> 3)
// val airports = Map("arrival" -> "Otopeni", "SFO" -> "San Fran")
// val rdd=sc.makeRDD(Seq(numbers,airports))
val rdd=sc.makeRDD(Seq(job1,job2,job3,job4,job5))
rdd.saveToEs("job/info")
sc.stop()
}
}
case class Job(jobName:String, jobUrl:String, companyName:String, salary:String)'
Generally NoSuchMethodError implies the caller was compiled with a different version than was found on the classpath at runtime (or you have multiple versions on the CP).
In your case, I'd guess that es-hadoop is built against a different version of Scala I've not used maven in a little while but I think the command you need to get some useful into is mvn depdencyTree. Use the output to see which version of Scala es-hadoop is built with and then configure your project to use the same Scala version.
To get stable/reproducible builds I'd recommend using something like the maven-enforcer-plugin:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-enforcer-plugin</artifactId>
<version>1.4.1</version>
<executions>
<execution>
<id>enforce</id>
<configuration>
<rules>
<dependencyConvergence />
</rules>
</configuration>
<goals>
<goal>enforce</goal>
</goals>
</execution>
</executions>
</plugin>
it can be annoying initially but once you have all your dependencies sorted you shouldn't get issues like this anymore.
use dependency like this
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-spark-20_2.11</artifactId>
<version>5.2.2</version>
</dependency>
for spark 2.0 and scala 2.11
My test class is
package com.htc.spring.rest.docs;
-------
#RunWith(SpringJUnit4ClassRunner.class)
#SpringApplicationConfiguration(classes=CrudRestDemoApplication.class)
#WebAppConfiguration
#IntegrationTest
public class ForRestDocumentationTest {
#Rule
public JUnitRestDocumentation restDoc = new
JUnitRestDocumentation("target/generated-snippets");
private final ObjectMapper objectMapper = new ObjectMapper();
#Autowired
public EmbeddedWebApplicationContext context;//or WebApplicationContext
private MockMvc mockMvc;
public ForRestDocumentationTest(){
System.out.println("Test class created");
}
#Before
public void setup(){
this.mockMvc = MockMvcBuilders.webAppContextSetup(this.context)
.apply(documentationConfiguration(this.restDoc)).alwaysDo(document("
{method-name}/{step}/")).build();
}
#Test
public void addOrder() throws Exception {
GregorianCalendar calendar = new
GregorianCalendar(2015,Calendar.MARCH,21);
OrderTO newOrder =
new OrderTO(8000, calendar.getTime(), "M/s Joseph Sales", 2120.5);
this.mockMvc.perform(post("/orders")
.accept(MediaType.APPLICATION_JSON)
.content(objectMapper.writeValueAsString(newOrder))
.contentType(MediaType.APPLICATION_JSON))
.andExpect(status().isOk())
.andDo(document("index"));
}
#Test
public void getOrder() throws Exception {
System.out.println("get order fired");
int orderId = 2000;
this.mockMvc.perform(get("/orders/{orderId}", orderId)
.contentType(MediaType.APPLICATION_JSON))
.andExpect(status().isOk())
.andExpect(jsonPath("orderId").isNotEmpty())
.andExpect(jsonPath("orderDate").isNotEmpty())
.andExpect(jsonPath("customer").isNotEmpty())
.andExpect(jsonPath("cost").isNotEmpty())
.andDo(document("index"));
}
#Test
public void getAllOrders() throws Exception {
this.mockMvc.perform(get("/orders")
.contentType(MediaType.APPLICATION_JSON))
.andExpect(status().isOk())
.andExpect(jsonPath("$").isArray())
.andExpect(jsonPath("[*].orderId").isNotEmpty())
.andExpect(jsonPath("[*].orderDate").isNotEmpty())
.andExpect(jsonPath("[*].custoer").isNotEmpty())
.andExpect(jsonPath("[*].cost").isNotEmpty())
.andDo(document("index"));
}
private static final String ORDERS_ORDERID_DESCRIPTION =
"OrderTO's OrderId";
private static final String ORDERS_ORDER_DATE_DESCRIPTION =
"OrderTO's Order Date";
private static final String ORDERS_CUSTOMER_DESCRIPTION =
"OrderTO's Customer";
private static final String ORDERS_COST_DESCRIPTION =
"OrderTO's Cost";
}
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
---------
<groupId>sprRestDocs</groupId>
<artifactId>sprRestDocs</artifactId>
<version>1.0.0</version>
<packaging>war</packaging>
<name>sprRestDocs</name>
<url>http://maven.apache.org</url>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.3.6.RELEASE</version>
<relativePath/>
</parent>
<properties>
<java.version>1.8</java.version>
<springframework.version>4.3.0.RELEASE
</springframework.version>
<jackson.library>2.8.0</jackson.library>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<snippetsDirectory>target/generated-snippets
</snippetsDirectory>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-hateoas</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>${springframework.version}</version>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
<version>3.1.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>javax.servlet.jsp</groupId>
<artifactId>javax.servlet.jsp-api</artifactId>
<version>2.3.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>${jackson.library}</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
<version>${jackson.library}</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>${jackson.library}</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>${jackson.library}</version>
</dependency>
<dependency>
<groupId>com.jayway.jsonpath</groupId>
<artifactId>json-path</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework.restdocs</groupId>
<artifactId>spring-restdocs-mockmvc</artifactId>
<version>1.1.0.RELEASE</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework.restdocs</groupId>
<artifactId>spring-restdocs-core</artifactId>
<version>1.1.0.RELEASE</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<finalName>sprRestDocs</finalName>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.2</version>
<configuration>
<source>${java.version}</source>
<target>${java.version}</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<version>2.4</version>
<configuration>
<warSourceDirectory>src/main/webapp</warSourceDirectory>
<warName>sprRestDocs</warName>
<failOnMissingWebXml>false</failOnMissingWebXml>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.19.1</version>
<configuration>
<includes>
<include>>**/*Test.java</include>
</includes>
</configuration>
</plugin>
<plugin>
<groupId>org.asciidoctor</groupId>
<artifactId>asciidoctor-maven-plugin</artifactId>
<version>1.5.3</version>
<executions>
<execution>
<id>generate-docs</id>
<phase>prepare-package</phase>
<goals>
<goal>process-asciidoc</goal>
</goals>
<configuration>
<backend>html</backend>
<doctype>book</doctype>
<attributes>
<snippets>${snippetsDirectory}</snippets>
</attributes>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<artifactId>maven-resources-plugin</artifactId>
<version>2.7</version>
<executions>
<execution>
<id>copy-resources</id>
<phase>prepare-package</phase>
<goals>
<goal>copy-resources</goal>
</goals>
<configuration>
<outputDirectory>
${project.build.outputDirectory}/static/docs
</outputDirectory>
<resources>
<resource>
<directory>
${project.build.directory}/generated-docs
</directory>
</resource>
</resources>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring snapshots</name>
<url>https://repo.spring.io/libs-snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
</project>
If I use mvn spring-boot:run no documentation is generating.
If I use mvn integration-test I get api-guide.adoc [html file] but no snippets
If I try to run
mvn -Dtest=com.htc.spring.rest.docs.ForRestDocumentationTest test
I get this error:
-------------------------------------------------------
T E S T S
-------------------------------------------------------
Running com.htc.spring.rest.docs.ForRestDocumentationTest
17:33:12.463 [main] DEBUG org.springframework.test.context.junit4.SpringJUnit4ClassRunner - SpringJUnit4ClassRunner constructor called with [class com.htc.spring.rest.docs.ForRestDocumentationTest]
17:33:12.463 [main] DEBUG org.springframework.test.context.BootstrapUtils - Instantiating CacheAwareContextLoaderDelegate from class [org.springframework.test.context.cache.DefaultCacheAwareContextLoaderDelegate]
17:33:12.479 [main] DEBUG org.springframework.test.context.BootstrapUtils - Instantiating BootstrapContext using constructor [public org.springframework.test.context.support.DefaultBootstrapContext(java.lang.Class,org.springframework.test.context.CacheAwareContextLoaderDelegate)]
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.383 sec <<< FAILURE! - in com.htc.spring.rest.docs.ForRestDocumentationTest
initializationError(com.htc.spring.rest.docs.ForRestDocumentationTest) Time elapsed: 0 sec <<< ERROR!
java.lang.IllegalStateException: Could not load TestContextBootstrapper [null]. Specify #BootstrapWith's 'value' attribute or make the default bootstrapper class available.
Caused by: java.lang.NoSuchMethodError: org.springframework.core.annotation.AnnotatedElementUtils.findAllMergedAnnotations(Ljava/lang/reflect/AnnotatedElement;Ljava/lang/Class;)Ljava/util/Set;
Hi I was facing the same issue myself, I found a solution so the snippet are being created, by changing from
<phase>prepare-package</phase>
to
<phase>generate-resources</phase>
but still facing an issue that snippet are getting created after html is getting generated, which is why it's not included as part of html.
Though I am still looking into that part, for now there is a temporary solution to this, first I execute mvn clean test
then once snippet get generated
again execute mvn test and proper html doc get's generated.
This not a clean solution, and I am still looking for a better solution to this issue, but it's getting the job done for now.