I have written a few custom-built graph algorithms using Apache Spark Graphx. I have three queries regarding caching and checkpoint methods. As I am new to spark and graphx, I will highly appreciate a detailed explanation.
Query 1:
I am working on a large graph with 200m vertices and 350m edges. As the graph size is large, I call the checkpoint method at regular intervals on the interim graph created in the long-running graphx algorithms. The majority of the time, the checkpoint works fine. However, I have observed the following warnings in the driver logs a few times.
22/08/04 03:25:48 [WARN] o.a.s.r.ReliableCheckpointRDD - Error writing partitioner org.apache.spark.HashPartitioner#e10 to file:/mnts/nfsvol/AML/tmp/checkpoint/a153fc7b-1be7-460d-a41b-f17c820c3bf1/rdd-496
22/08/04 03:29:35 [WARN] o.a.s.r.ReliableCheckpointRDD - Error writing partitioner org.apache.spark.HashPartitioner#e10 to file:/mnts/nfsvol/AML/tmp/checkpoint/a153fc7b-1be7-460d-a41b-f17c820c3bf1/rdd-482
How to fix such warnings?
Query 2:
It is recommended to cache/persist the object (in my case, the graph object) before checkpointing so that the DAG is not recomputed during the checkpoint. However, is it safe to unpersist the object immediately after the checkpoint is over and release the memory?
FYI, I have compared both the approaches of calling and not calling the unpersist and have not found any difference in the performance. Also, in the Spark UI, I have observed that in both the approaches, the stage starts with the ReliableCheckpointRDD.
Query 3:
If the answer to query # 2 is yes, then is it risky to get the warning mentioned in Query # 1? Would it fail the job altogether?
During one of the executions of the algorithm, I received the following error that failed the job. I wonder what is the cause of this error if the answer to query # 2 is no.
22/08/04 03:55:46 [INFO] i.c.s.a.a.AMLGraphMain$ - Execution of AML Graph application failed or stopped with exception: Error while executing AML Graph Application: Error while executing AML Graph Application: Error occurred during execution of graph algorithms: Job aborted due to stage failure: Task creation failed: java.io.FileNotFoundException: File file:/mnts/nfsvol/AML/tmp/checkpoint/a153fc7b-1be7-460d-a41b-f17c820c3bf1/rdd-482/part-00000 does not exist
java.io.FileNotFoundException: File file:/mnts/nfsvol/AML/tmp/checkpoint/a153fc7b-1be7-460d-a41b-f17c820c3bf1/rdd-482/part-00000 does not exist
at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:428)
at org.apache.spark.rdd.ReliableCheckpointRDD.org$apache$spark$rdd$ReliableCheckpointRDD$$getPartitionBlockLocations(ReliableCheckpointRDD.scala:102)
at org.apache.spark.rdd.ReliableCheckpointRDD.getPreferredLocations(ReliableCheckpointRDD.scala:117)
at org.apache.spark.rdd.RDD.$anonfun$preferredLocations$1(RDD.scala:299)
at org.apache.spark.rdd.RDD$$Lambda$1728/00000000B4035EF0.apply(Unknown Source)
at scala.Option.map(Option.scala:230)
at org.apache.spark.rdd.RDD.preferredLocations(RDD.scala:299)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2134)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$3(DAGScheduler.scala:2145)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1734/00000000B4037B50.apply$mcVI$sp(Unknown Source)
at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2(DAGScheduler.scala:2144)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2$adapted(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1733/00000000B4036AD0.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$3(DAGScheduler.scala:2145)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1734/00000000B4037B50.apply$mcVI$sp(Unknown Source)
at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2(DAGScheduler.scala:2144)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2$adapted(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1733/00000000B4036AD0.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$3(DAGScheduler.scala:2145)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1734/00000000B4037B50.apply$mcVI$sp(Unknown Source)
at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2(DAGScheduler.scala:2144)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2$adapted(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1733/00000000B4036AD0.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$3(DAGScheduler.scala:2145)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1734/00000000B4037B50.apply$mcVI$sp(Unknown Source)
at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2(DAGScheduler.scala:2144)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2$adapted(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1733/00000000B4036AD0.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$3(DAGScheduler.scala:2145)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1734/00000000B4037B50.apply$mcVI$sp(Unknown Source)
at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2(DAGScheduler.scala:2144)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2$adapted(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1733/00000000B4036AD0.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$3(DAGScheduler.scala:2145)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1734/00000000B4037B50.apply$mcVI$sp(Unknown Source)
at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2(DAGScheduler.scala:2144)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$getPreferredLocsInternal$2$adapted(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$1733/00000000B4036AD0.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocsInternal(DAGScheduler.scala:2142)
at org.apache.spark.scheduler.DAGScheduler.getPreferredLocs(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitMissingTasks$2(DAGScheduler.scala:1166)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitMissingTasks$2$adapted(DAGScheduler.scala:1166)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$2427/00000000B43AEE30.apply(Unknown Source)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.TraversableLike$$Lambda$26/00000000A52C4560.apply(Unknown Source)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.spark.scheduler.DAGScheduler.submitMissingTasks(DAGScheduler.scala:1166)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1118)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5(DAGScheduler.scala:1121)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5$adapted(DAGScheduler.scala:1120)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$2420/00000000B43ABF50.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1120)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5(DAGScheduler.scala:1121)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5$adapted(DAGScheduler.scala:1120)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$2420/00000000B43ABF50.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1120)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5(DAGScheduler.scala:1121)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$submitStage$5$adapted(DAGScheduler.scala:1120)
at org.apache.spark.scheduler.DAGScheduler$$Lambda$2420/00000000B43ABF50.apply(Unknown Source)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.scheduler.DAGScheduler.submitStage(DAGScheduler.scala:1120)
at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:1061)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2196)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2188)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2177)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
: Array(in.co.sbi.analytics.aml.AMLGraphMain$.executeGraphApp$1(aml_graphx_main.scala:622), in.co.sbi.analytics.aml.AMLGraphMain$.main(aml_graphx_main.scala:642), in.co.sbi.analytics.aml.AMLGraphMain.main(aml_graphx_main.scala), sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method), sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62), sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43), java.lang.reflect.Method.invoke(Method.java:498), org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52), org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:928), org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:180), org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203), org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90), org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1007), org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016), org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala))
Here are the cluster details: 32 executors with 4 CPU and 24GB memory each.
Kindly let me know if any more details are required. Thanks!
Related
I am having some trouble when I tried to pass a function to the map method of a Spark RDD. My problem appears to be in the function maybe, but not sure about it.
My functions are something like this:
def add_h3_hash_column(row):
rowDict = row.asDict()
hash = h3.geo_to_h3(
rowDict["latitude"], rowDict["longitude"], resolution
)
rowDict[f"h3_hash_{res}"] = str(hash)
return rowDict
def h3_hash_generator(spark: SparkSession, resolution, sdf: DataFrame) -> DataFrame:
"""Creates a new column in a DataFrame with the Hexagon hashes of the given resolution
that map to a geographic point (latitude, longitude).
:param resolution: the h3 resolution for the hexagons.
:param df: DataFrame containing two columns named "latitude" and "longitude".
:return: Returns the DataFrame with a new column with h3 hashes of desire resolution.
"""
sdf_w_hash = sdf.rdd.map(add_h3_hash_column)
sdf = spark.createDataFrame(sdf_w_hash)
return sdf
I have tried other things also, like returning a Row() object in from add_h3_hash_column, or by simplifying the function to just return ("Hello") and still received the same error.
When executing the code I received the following error:
objc[54297]: +[__NSCFConstantString initialize] may have been in progress in another thread when fork() was called.
objc[54297]: +[__NSCFConstantString initialize] may have been in progress in another thread when fork() was called. We cannot safely call it or ignore it in the fork() child process. Crashing instead. Set a breakpoint on objc_initializeAfterForkError to debug.
22/10/28 13:47:48 ERROR Executor: Exception in task 0.0 in stage 5.0 (TID 102)
org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:550)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:539)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:657)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:635)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:470)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
at scala.collection.TraversableOnce.to(TraversableOnce.scala:315)
at scala.collection.TraversableOnce.to$(TraversableOnce.scala:313)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:307)
at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:307)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:294)
at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:288)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.api.python.PythonRDD$.$anonfun$runJob$1(PythonRDD.scala:166)
at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2236)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:498)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:501)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.io.EOFException
at java.base/java.io.DataInputStream.readInt(DataInputStream.java:397)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:642)
... 29 more
22/10/28 13:47:48 WARN TaskSetManager: Lost task 0.0 in stage 5.0 (TID 102) (ip-192-168-1-152.eu-west-1.compute.internal executor driver): org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:550)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:539)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:657)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:635)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:470)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
at scala.collection.TraversableOnce.to(TraversableOnce.scala:315)
at scala.collection.TraversableOnce.to$(TraversableOnce.scala:313)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:307)
at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:307)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:294)
at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:288)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.api.python.PythonRDD$.$anonfun$runJob$1(PythonRDD.scala:166)
at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2236)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:498)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:501)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.io.EOFException
at java.base/java.io.DataInputStream.readInt(DataInputStream.java:397)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:642)
... 29 more
22/10/28 13:47:48 ERROR TaskSetManager: Task 0 in stage 5.0 failed 1 times; aborting job
Traceback (most recent call last):
File "partner_stores/runners/concept_runners/main_concepts.py", line 33, in <module>
main(sys.argv[1:])
File "partner_stores/runners/concept_runners/main_concepts.py", line 23, in main
build_stg_h3_store_addresses(spark, args)
File "/Users/danielteixeira/repositories/partner-data-mesh/data_products/partner_stores/partner_stores/runners/concept_runners/transformations/build_stg_h3_store_addresses.py", line 45, in build_stg_h3_store_addresses
stg_h3_store_addresses = h3_hash_generator(
File "/Users/danielteixeira/repositories/partner-data-mesh/data_products/partner_stores/partner_stores/utils/common.py", line 98, in h3_hash_generator
sdf = spark.createDataFrame(sdf_w_hash)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/sql/session.py", line 675, in createDataFrame
return self._create_dataframe(data, schema, samplingRatio, verifySchema)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/sql/session.py", line 698, in _create_dataframe
rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/sql/session.py", line 486, in _createFromRDD
struct = self._inferSchema(rdd, samplingRatio, names=schema)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/sql/session.py", line 460, in _inferSchema
first = rdd.first()
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/rdd.py", line 1586, in first
rs = self.take(1)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/rdd.py", line 1566, in take
res = self.context.runJob(self, takeUpToNumLeft, p)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/context.py", line 1233, in runJob
sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/py4j/java_gateway.py", line 1304, in __call__
return_value = get_return_value(
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/pyspark/sql/utils.py", line 111, in deco
return f(*a, **kw)
File "/Users/danielteixeira/Library/Caches/pypoetry/virtualenvs/partner-stores-hpriuLoD-py3.8/lib/python3.8/site-packages/py4j/protocol.py", line 326, in get_return_value
raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 5.0 failed 1 times, most recent failure: Lost task 0.0 in stage 5.0 (TID 102) (ip-192-168-1-152.eu-west-1.compute.internal executor driver): org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:550)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:539)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:657)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:635)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:470)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
at scala.collection.TraversableOnce.to(TraversableOnce.scala:315)
at scala.collection.TraversableOnce.to$(TraversableOnce.scala:313)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:307)
at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:307)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:294)
at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:288)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.api.python.PythonRDD$.$anonfun$runJob$1(PythonRDD.scala:166)
at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2236)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:498)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:501)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.io.EOFException
at java.base/java.io.DataInputStream.readInt(DataInputStream.java:397)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:642)
... 29 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2303)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2252)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2251)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2251)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1124)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1124)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1124)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2490)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2432)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2421)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:902)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2196)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2217)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2236)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:550)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:539)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:38)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:657)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:635)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:470)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
at scala.collection.TraversableOnce.to(TraversableOnce.scala:315)
at scala.collection.TraversableOnce.to$(TraversableOnce.scala:313)
at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:307)
at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:307)
at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:294)
at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:288)
at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
at org.apache.spark.api.python.PythonRDD$.$anonfun$runJob$1(PythonRDD.scala:166)
at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2236)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:498)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:501)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
... 1 more
Caused by: java.io.EOFException
at java.base/java.io.DataInputStream.readInt(DataInputStream.java:397)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:642)
... 29 more
But if I do not pass a function, it works:
def h3_hash_generator(spark: SparkSession, resolution, sdf: DataFrame) -> DataFrame:
sdf_w_hash = sdf.rdd.map(lambda x:
(x.id,
x.store_id,
h3.geo_to_h3(x.latitude, x.longitude, resolution)
))
sdf = spark.createDataFrame(sdf_w_hash)
return sdf
The function add_h3_hash_column is just a python function (it has nothing to do with PySpark).
When you do this: sdf.rdd.map(add_h3_hash_column), the map function is called for the RDD object, coming from PySpark library. This is a syntax issue as map function is executed for each record, but it doesn't know from the above expression about the parameters that needs to go in.
The second way you used map function is the right way of calling the map function on an RDD.
PySpark map (map()) is an RDD transformation that is used to apply
the transformation function (lambda) on every element of RDD/DataFrame
and returns a new RDD.
The lambda expression you just wrote means, for each record x you are creating what comes after the colon :, in this case, a tuple with 3 elements which are id, store_id and geo_to_h3 (the hash value).
You can refer to this link.
Hope it helps.
In Apache Spark I do join operation between rate stream and csv file reading streaming operation, both of them are needed for very low intensity data generation. Rate produces increasing ids and limits the generation speed, while the csv reader tends to load all the data without rate limit. So jointing the stream should help with limiting the csv data.
readFromCSVFile(tmpPath.toString).as("csv").join(rate.as("counter")).where("csv.id == counter.value")
Unfortunately, join uses HDFS under the hood, so I'm getting the large error stack:
2021-10-15 14:18:02 ERROR Inbox:94 - Ignoring error
java.util.concurrent.RejectedExecutionException: Task org.apache.spark.executor.Executor$TaskRunner#137b9386 rejected from java.util.concurrent.ThreadPoolExecutor#4cd6112[Shutting down, pool size = 7, active threads = 7, queued tasks = 0, completed tasks = 30]
at java.base/java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2055)
at java.base/java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:825)
at java.base/java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1355)
at org.apache.spark.executor.Executor.launchTask(Executor.scala:230)
at org.apache.spark.scheduler.local.LocalEndpoint.$anonfun$reviveOffers$1(LocalSchedulerBackend.scala:93)
at org.apache.spark.scheduler.local.LocalEndpoint.$anonfun$reviveOffers$1$adapted(LocalSchedulerBackend.scala:91)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at org.apache.spark.scheduler.local.LocalEndpoint.reviveOffers(LocalSchedulerBackend.scala:91)
at org.apache.spark.scheduler.local.LocalEndpoint$$anonfun$receive$1.applyOrElse(LocalSchedulerBackend.scala:74)
at org.apache.spark.rpc.netty.Inbox.$anonfun$process$1(Inbox.scala:115)
at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:203)
at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
at org.apache.spark.rpc.netty.MessageLoop.org$apache$spark$rpc$netty$MessageLoop$$receiveLoop(MessageLoop.scala:75)
at org.apache.spark.rpc.netty.MessageLoop$$anon$1.run(MessageLoop.scala:41)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:835)
2021-10-15 14:18:02 ERROR WriteToDataSourceV2Exec:73 - Data source write support org.apache.spark.sql.execution.streaming.sources.MicroBatchWrite#2d76d5c5 is aborting.
2021-10-15 14:18:02 ERROR WriteToDataSourceV2Exec:73 - Data source write support org.apache.spark.sql.execution.streaming.sources.MicroBatchWrite#2d76d5c5 aborted.
2021-10-15 14:18:02 ERROR MicroBatchExecution:94 - Query kafkaDataGenerator [id = 23a9869d-913f-4cf6-b0ed-e8149ed149e6, runId = d98459c0-ae1f-44e8-a610-7ee413740880] terminated with error
org.apache.spark.SparkException: Writing job aborted.
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:413)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2$(WriteToDataSourceV2Exec.scala:361)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.writeWithV2(WriteToDataSourceV2Exec.scala:322)
at org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.run(WriteToDataSourceV2Exec.scala:329)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:39)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:39)
at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:45)
at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3627)
at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2940)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3618)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3616)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2940)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$16(MicroBatchExecution.scala:575)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$15(MicroBatchExecution.scala:570)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:352)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:350)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:69)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runBatch(MicroBatchExecution.scala:570)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:223)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:352)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:350)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:69)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:191)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:57)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:185)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:334)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:245)
Caused by: org.apache.spark.SparkException: Job 0 cancelled because SparkContext was shut down
at org.apache.spark.scheduler.DAGScheduler.$anonfun$cleanUpAfterSchedulerStop$1(DAGScheduler.scala:979)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$cleanUpAfterSchedulerStop$1$adapted(DAGScheduler.scala:977)
at scala.collection.mutable.HashSet.foreach(HashSet.scala:79)
at org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:977)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onStop(DAGScheduler.scala:2257)
at org.apache.spark.util.EventLoop.stop(EventLoop.scala:84)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:2170)
at org.apache.spark.SparkContext.$anonfun$stop$12(SparkContext.scala:1973)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1357)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1973)
at org.apache.spark.SparkContext.$anonfun$new$35(SparkContext.scala:631)
at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:214)
at org.apache.spark.util.SparkShutdownHookManager.$anonfun$runAll$2(ShutdownHookManager.scala:188)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1932)
at org.apache.spark.util.SparkShutdownHookManager.$anonfun$runAll$1(ShutdownHookManager.scala:188)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188)
at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:835)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:775)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:382)
... 37 more
2021-10-15 14:18:03 ERROR Utils:94 - Aborting task
java.lang.NullPointerException
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.$anonfun$run$7(WriteToDataSourceV2Exec.scala:445)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1411)
at org.apache.spark.sql.execution.datasources.v2.DataWritingSparkTask$.run(WriteToDataSourceV2Exec.scala:477)
at org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.$anonfun$writeWithV2$2(WriteToDataSourceV2Exec.scala:385)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:835)
2021-10-15 14:18:03 ERROR DataWritingSparkTask:73 - Aborting commit for partition 30 (task 31, attempt 0, stage 2.0)
and the most important part is there:
java.lang.IllegalStateException: Error committing version 1 into HDFSStateStore[id=(op=0,part=33),dir=file:/C:/Users/eljah32/AppData/Local/Temp/spark-cb8ca918-43cc-43d6-8f36-3bf80d1e7852/kafkaDataGenerator/state/0/33/left-keyWithIndexToValue]
at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$HDFSBackedStateStore.commit(HDFSBackedStateStoreProvider.scala:139)
It means, that the join operation requires the HDFS to be used. HDFSBackedStateStoreProvider is the only possible implementation, another one known is based on RocksDB. I Haven't found a way is it possible to disable StateStoreProvider for the join operation, if the data amount is too small and we can rely on memory operatons for the particular job? May be there is some option to disable StateStoreProvider usage since there is no pure in memory implementation?
I run pyspark in the local model to learn the wordcount case. I write a spark_test.txt in current file, and run pyspark command , lines = sc.textFile('../spark_test.txt') lines.count(), it throws out a bug:
Input path does not exist: file:/Users/lisl/myproject/spark_test.txt
** I tried:**
sc.textFile('spark_test.txt')
lines = sc.textFile('../spark_test.txt')
lines.count()
i expect the outpub be the number of lines of the file , but the actual output is :
file "/Users/lisl/.pyenv/versions/3.7.1/lib/python3.7/site-packages/pyspark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/Users/lisl/myproject/learn_test/spark_test.txt
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:287)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:204)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:55)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:567)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:835)
First of all, some lines of code are missing. Please try the code below and make sure that the path to your file exist and you have given read access for all to it (chmod a+r yourFile)
text_file = sc.textFile("path/to/your/input/file")
wordCounts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)
wordCounts.saveAsTextFile("path/to/your/output/file")
I don't know where is the problem and how to fix it.The spark version is 2.1.0 and the python version is 3.4.6.
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.1.0
/_/
Using Python version 3.4.6 (default, Mar 9 2017 19:57:54)
SparkSession available as 'spark'.
##This is the command i code as the official document
>>> input_data = sc.textFile('my python')
>>> input_data.count()
but it is not work.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/spark/python/pyspark/rdd.py", line 1041, in count
return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
File "/usr/local/spark/python/pyspark/rdd.py", line 1032, in sum
return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
File "/usr/local/spark/python/pyspark/rdd.py", line 906, in fold
vals = self.mapPartitions(func).collect()
File "/usr/local/spark/python/pyspark/rdd.py", line 809, in collect
port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
File "/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
File "/usr/local/spark/python/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: java.net.ConnectException: Call From hadoop/192.168.81.129 to localhost:9000 failed on connection exception: java.net.ConnectException: 拒绝连接; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:792)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:732)
at org.apache.hadoop.ipc.Client.call(Client.java:1479)
at org.apache.hadoop.ipc.Client.call(Client.java:1412)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy19.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:771)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy20.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:2108)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1305)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1301)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1301)
at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:57)
at org.apache.hadoop.fs.Globber.glob(Globber.java:252)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1674)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:259)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:202)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:53)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:935)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:934)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:453)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.ConnectException: 拒绝连接
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:744)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:614)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:712)
at org.apache.hadoop.ipc.Client$Connection.access$2900(Client.java:375)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1528)
at org.apache.hadoop.ipc.Client.call(Client.java:1451)
... 56 more
>>>
I am working with Talend tMatchGroupHadoop component with Amazon EMR cluster,
it is giving an error: "could only be replicated to 0 nodes, instead of 1".
Actually data node is running in the AMR cluster.
hadoop fsck
..............Status: HEALTHY
Total size: 315153 B
Total dirs: 12
Total files: 14 (Files currently being written: 1)
Total blocks (validated): 13 (avg. block size 24242 B)
Minimally replicated blocks: 13 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 1
Average block replication: 1.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 1
Number of racks: 1
FSCK ended at Mon Sep 08 06:07:58 UTC 2014 in 158 milliseconds
I am getting the following error:
[statistics] connecting to socket on port 3645
[statistics] connected
[INFO ]: org.apache.hadoop.hdfs.DFSClient - Exception in createBlockOutputStream 10.230.30.124:9200 java.net.ConnectException: Connection timed out: no further information
[INFO ]: org.apache.hadoop.hdfs.DFSClient - Abandoning block blk_-3580819895919001579_2135
[INFO ]: org.apache.hadoop.hdfs.DFSClient - Excluding datanode 10.230.30.124:9200
Exception in component tMatchGroupHadoop_2_GroupOut
org.apache.hadoop.ipc.RemoteException: java.io.IOException: File /in could only be replicated to 0 nodes, instead of 1
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:1569)
at org.apache.hadoop.hdfs.server.namenode.NameNode.addBlock(NameNode.java:701)
at sun.reflect.GeneratedMethodAccessor6.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:583)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1393)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1389)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1140)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1387)
at org.apache.hadoop.ipc.Client.call(Client.java:1092)
[WARN ]: org.apache.hadoop.hdfs.DFSClient - DataStreamer Exception: org.apache.hadoop.ipc.RemoteException: java.io.IOException: File /in could only be replicated to 0 nodes, instead of 1
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:1569)
at org.apache.hadoop.hdfs.server.namenode.NameNode.addBlock(NameNode.java:701)
at sun.reflect.GeneratedMethodAccessor6.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:583)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1393)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1389)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1140)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1387)
at org.apache.hadoop.ipc.RPC$Invoker.invoke(RPC.java:229)
at com.sun.proxy.$Proxy1.addBlock(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:85)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:62)
at com.sun.proxy.$Proxy1.addBlock(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.locateFollowingBlock(DFSClient.java:3595)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.nextBlockOutputStream(DFSClient.java:3456)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.access$2600(DFSClient.java:2672)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream$DataStreamer.run(DFSClient.java:2912)
at org.apache.hadoop.ipc.Client.call(Client.java:1092)
at org.apache.hadoop.ipc.RPC$Invoker.invoke(RPC.java:229)
at com.sun.proxy.$Proxy1.addBlock(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:85)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:62)
at com.sun.proxy.$Proxy1.addBlock(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.locateFollowingBlock(DFSClient.java:3595)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.nextBlockOutputStream(DFSClient.java:3456)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.access$2600(DFSClient.java:2672)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream$DataStreamer.run(DFSClient.java:2912)
[WARN ]: org.apache.hadoop.hdfs.DFSClient - Error Recovery for block blk_-3580819895919001579_2135 bad datanode[0] nodes == null
[WARN ]: org.apache.hadoop.hdfs.DFSClient - Could not get block locations. Source file "/in" - Aborting...
[statistics] disconnected
[ERROR]: org.apache.hadoop.hdfs.DFSClient - Exception closing file /in : org.apache.hadoop.ipc.RemoteException: java.io.IOException: File /in could only be replicated to 0 nodes, instead of 1
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:1569)
at org.apache.hadoop.hdfs.server.namenode.NameNode.addBlock(NameNode.java:701)
at sun.reflect.GeneratedMethodAccessor6.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:583)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1393)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1389)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1140)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1387)
org.apache.hadoop.ipc.RemoteException: java.io.IOException: File /in could only be replicated to 0 nodes, instead of 1
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:1569)
at org.apache.hadoop.hdfs.server.namenode.NameNode.addBlock(NameNode.java:701)
at sun.reflect.GeneratedMethodAccessor6.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:583)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1393)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1389)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1140)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1387)
at org.apache.hadoop.ipc.Client.call(Client.java:1092)
at org.apache.hadoop.ipc.RPC$Invoker.invoke(RPC.java:229)
at com.sun.proxy.$Proxy1.addBlock(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:85)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:62)
at com.sun.proxy.$Proxy1.addBlock(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.locateFollowingBlock(DFSClient.java:3595)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.nextBlockOutputStream(DFSClient.java:3456)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.access$2600(DFSClient.java:2672)
at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream$DataStreamer.run(DFSClient.java:2912)
Job HadoopMatch ended at 17:54 08/09/2014. [exit code=1]
What is wrong here?
to work this, we have to check the option, use datanode hostname.
We have do modification in the windows host file
C:\Windows\System32\Drivers\etc\hosts
EC2PublicIP PrivateDNS
example :
10.210.202.106 ip-101-210-141-188.ec2.internal
then it is working now.