SQL vs PySpark/Spark SQL - postgresql

Could someone please help me understand why we need to use PySpark or SprakSQL etc if the source and target of my data is the same DB?
For example, lets say I need to load data to table X in PostgresDB from tables X and Y. Would it not be simpler and faster to just do it in Postgres instead of using SprakSQL or PySpark etc?
I understand the need for these solutions if data is from multiple sources, but if it is from same source, do I need to use PySpark?

You can use spark when you want to do heavy data transformations, it makes it easier to load and process due to distributed processing.
It totally depends on how large is the data and how you want to transform it.
Using Postgres will be a good idea if data is relatively small and no transformation is required.

It is not necessary to use PySpark. Both PySpark & SparkSQL have their value in managing/manipulating large volumes of data few hundred of GBs, TBs, or PBs in a distributed computing setup. If this is your case, please use PySpark, it will be more efficient to load, manipulate, process/shape the data before inserting it into another table.

Thank you all for the feedback. I think I will use glue pyspark if source and destination are different. Else i will use glue python with jdbc connection and have one session do the tasks without bringing data to dataframes.

Related

What's the best way to read/write from/to Redshift with Scala spark since spark-redshift lib is not supported publicly by Databricks

I have my Spark project in Scala I want to use Redshift as my DataWarehouse, I have found spark-redshift repo exists but Databricks made it private since a couple of years ago and doesn't support it publicly anymore.
What's the best option right now to deal with Amazon Redshift and Spark (Scala)
This is a partial answer as I have only been using Spark->Redshift in a real world use-case and never benchmarked Spark read from Redshift performance.
When it comes to writing from Spark to Redshift, by far the most performant way that I could find was to write parquet to S3 and then use Redshift Copy to load the data. Writing to Redshift through JDBC also works but it is several orders of magnitude slower than the former method. Other storage formats could be tried as well, but I would be surprised if any row-oriented format could beat Parquet as Redshift internally stores data in columnar format. Another columnar format that is supported by both Spark and Redshift is ORC.
I never came across a use-case of reading large amounts of data from Redshift using Spark as it feels more natural to load all the data to Redshift and use it for joins and aggregations. It is probably not cost-efficient to use Redshift just as a bulk storage and use another engine for joins and aggregations. For reading small amounts of data, JDBC works fine. For large reads, my best guess is Unload command and S3.

Migrate data from NoSQL to an RDBMS

We have data existing in HBase and we want to move to AWS Aurora (MySQL) and we need to use the existing data so have to somehow load the NoSQL data into Aurora.
It's not a very big data base. Just a few tables.
Are there any best practices/tools to migrate data from NoSQL to a relational DB? I saw a lot of questions on the internet that ask to the reverse (DB -> NoSQL) but my requirement is a bit different and I don't find any helpful information.
Can someone please help? Where do I even start?
One simple way to do this without writing too much custom code would be to use Spark-HBase Connector from Hortonworks (SHC) to read data from an HBase table into a Spark dataframe and to write that dataframe into a MySQL table. The key challenge would be to get SHC to work, because in my experience it's extremely version sensitive. So the trick is to correctly coordinate your version of Spark, HBase, and SHC (and finding that right combination is trickier than you may think).
However, if you manage to get all the dependencies right, then doing the above is a matter of a few lines of code in Jupyter Notebook or Pyspark. You could run this on Yarn to parallelize the workload, in case it's large. Should work. Give it a try.

How do I efficiently migrate the BigQuery Tables to On-Prem Postgres?

I need to migrate the tables from the BigQuery to the on-prem Postgres database.
How can I efficiently achieve that?
Some thoughts that are coming
I will use Google APIs to export the data from the tables
Store it locally
And finally, import to Postgres
But I am not sure if that can be done for a huge amount of data in TBs. Also, how can I automate this process? Can I use Jenkins for that?
Exporting the data from BigQuery, store it and importing it to PostgreSQL is a good approach. Here are other two alternatives that you can consider:
1) There's a PostgreSQL wrapper for BigQuery that allows to query directly from BigQuery. Depending on your case scenario this might be the easiest way to transfer the data; although, for TBs it might not be the best approach. This suggestion was made by #David in this SO question.
2) Using Dataflow. You can create a ETL process using Apache Beam to made the transfer. Take a look at this how-to for transferring data from BigQuery to CloudSQL. You would need to adapt it for local PostgreSQL, but the idea maintains.
Here's another SO answer that gives more context on this approach.

Is really Hive on Tez with ORC performance better than Spark SQL for ETL?

I have little experience in Hive and currently learning Spark with Scala. I am curious to know whether Hive on Tez really faster than SparkSQL. I searched many forums with test results but they have compared older version of Spark and most of them are written in 2015. Summarized main points below
ORC will do the same as parquet in Spark
Tez engine will give better performance like Spark engine
Joins are better/faster in Hive than Spark
I feel like Hortonworks supports more for Hive than Spark and Cloudera vice versa.
sample links :
link1
link2
link3
Initially I thought Spark would be faster than anything because of their in-memory execution. after reading some articles I got Somehow existing Hive also getting improvised with new concepts like Tez, ORC, LLAP etc.
Currently running with PL/SQL Oracle and migrating to big data since volumes are getting increased. My requirements are kind of ETL batch processing and included data details involved in every weekly batch runs. Data will increase widely soon.
Input/lookup data are csv/text formats and updating into tables
Two input tables which has 5 million rows and 30 columns
30 look up tables used to generate each column of output table which contains around 10 million rows and 220 columns.
Multiple joins involved like inner and left outer since many look up tables used.
Kindly please advise which one of below method I should choose for better performance with readability and easy to include minor updates on columns for future production deployment.
Method 1:
Hive on Tez with ORC tables
Python UDF thru TRANSFORM option
Joins with performance tuning like map join
Method 2:
SparkSQL with Parquet format which is converting from text/csv
Scala for UDF
Hope we can perform multiple inner and left outer join in Spark
The best way to implement the solution to your problem as below.
To load the data into the table the spark looks good option to me. You can read the tables from the hive metastore and perform the incremental updates using some kind of windowing functions and register them in hive. While ingesting as data is populated from various lookup table, you are able to write the code in programatical way in scala.
But at the end of the day, there need to be a query engine that is very easy to use. As your spark program register the table with hive, you can use hive.
Hive support three execution engines
Spark
Tez
Mapreduce
Tez is matured, spark is evolving with various commits from Facebook and community.
Business can understand hive very easily as a query engine as it is much more matured in the industry.
In short use spark to process the data for daily processing and register them with hive.
Create business users in hive.

tELTPostgresql* usage issue

I'm trying to use tELTPostgresqlOutput with postgres 9.3 server and this is the result:
With a simple tPostgresqlInput and a tLogRow it works perfectly.
This is not how to use the ELT components. These should be used to do in database server transformations such as creating a star schema table from multiple tables in the same database. This allows you to use the database to do the transformation and avoid reading the data into memory for your job. It's particularly useful when dealing with large datasets that can't be broken down for the transformation.
If you want to transfer data from one database server/vendor to another you will need to use ETL components (pretty much anything not explicitly marked ELT) to read data out of the source database and write it back to the target database.
In this case you should be using a tMSSQLInput component to read in the data you need, a tMap to transform the data in the way you want and a tPostgresqlOutput component to write the data out to the Postgres database.