I'm trying to search for the items which's attribute matches the given function below in my large dataset, but I'm facing a problem here.
The row parameter only selects first 300 objects and the function then filters the matching results, but I'm trying to search the whole index, not only just first few, how can I rewrite this to achieve it?
having(
select(search(myIndex,q="*:*", fl="*", rows=300),
id,
dotProduct(ATTRIBUTE, array(4,5,2)) as prod,
l1norm(array(1,2,3)) as a,
l1norm(ATTRIBUTE) as b,
div(prod, add(a, sub(b, prod))) as c
), and(gteq(c, 5), lteq(c, 8)))
The simplest would be to increase the number of rows to cover the number of entries in the index.
However if this number is huge, you should probably use the /export request handler instead of a regular select-like handler.
The /export request handler allows a fully sorted result set to be
streamed out of Solr using a special rank query parser and
response writer. These have been specifically designed to work together to handle scenarios that involve sorting and exporting millions of records.
Depending on your needs, you could also do multiple queries playing with paginated results using both parameter start and rows, or if the number of entries is not known by the client code, use cursorMark.
Related
I have a system with a large number of tables that contain historical data. Each table has a ts_from and ts_to column which are of type timestamptz. These represent the time period in which the data for a particular row was valid.
These columns are indexed.
If I want to query all rows that were valid at a particular timestamp, it is trivial to write the ts_from <= #at_timestamp AND ts_to >= #at_timestamp WHERE clause to utilitise the index.
However, I wanted to create a function called Temporal.at which would take the #at_timestamp column and the ts_from / ts_to columns and do this by hiding the complexity of the comparison from the query that uses it. You might think this is trivial, but I would also like to extend the concept to create a function called Temporal.between which would take a #from_timestamp and #to_timestamp and select all rows that were valid between those two periods. That function would not be trivial, as one would have to check where rows partially overlap the period rather than always being fully enclosed by it.
The issue is this: I have written these functions but they do not cause the index to be used. The query performance is woefully slow on the history tables, some of which have hundreds of millions of rows.
The questions therefore are:
a) Is there a way to write these functions so that we can be sure the indexes will be used?
b) Am I going about this completely the wrong way and is there a better way to proceed?
This is complicated if you model ts_from and ts_to as two different timestamp columns. Instead, you should use a range type: tstzrange. Then everything will become simple:
for containment in an interval, use #at_timestamp <# from_to
for interval overlap, use tstzinterval(#from_timestamp, #to_timestamp) && from_to
Both queries can be supported by a GiST index on the range column.
Let me give a summary of what I've been attempting to do and the efficiency issues I've been running into:
Essentially I want my users to be able to select parameters to filter data from my database, then I want to pass relevant data which passes those filters from the controller.
However, these filters query on data from multiple different tables (that is, about 5-6 different tables), some of which are quite large (as in 100k+ rows). These tables are all related to what I want to show, e.g. Here is a bond that meets so and so criteria, which is issued by so and so issuer, which must meet these criteria, and so on.
From an end result, I only really need about 100 rows after querying based on the parameters given by the user, but it feels like I need to look at everything in every table because I dont know how strict the filters will be beforehand. e.g. With a starting universe of 100k sets of data, passing filter f1,f2 of Table 1 might leave 90k, but after passing through filter f3 of table 2, f4,f5,f6 of table 3, and so ..., we might end up with 100 or less sets of data that pass these parameters because the last filters checked might be quite strict.
How can I go about querying through these multiple different tables efficiently?
Doing a join between them seems like it'd yield some time complexity of |T_1||T_2||T_3||T_4||T_5||T_6| where T_i is the "size" of table i.
On the other hand, just looking through the other tables based off the ids of the ones that pass the previous filter (as in, id 5,7,8 pass filters in T_1, which of those ids then pass filters in T_2, then which of those pass filters in T_3 and so on) looks like it might(?) have time complexity of |T_1| + |T_2| + ... + |T_6|.
I'm relatively new to Ruby on Rails, so im not entirely sure all of the tools at my disposal that could help with optimizing this, but at the same time I'm not entirely sure how to best approach this algorithmically.
We are evaluating NEsper. Our focus is to monitor data quality in an enterprise context. In an application we are going to log every change on a lot of fields - for example in an "order". So we have fields like
Consignee name
Consignee street
Orderdate
....and a lot of more fields. As you can imagine the log files are going to grow big.
Because the data is sent by different customers and is imported in the application, we want to analyze how many (and which) fields are updated from "no value" to "a value" (just as an example).
I tried to build a test case with just with the fields
order reference
fieldname
fieldvalue
For my test cases I added two statements with context-information. The first one should just count the changes in general per order:
epService.EPAdministrator.CreateEPL("create context RefContext partition by Ref from LogEvent");
var userChanges = epService.EPAdministrator.CreateEPL("context RefContext select count(*) as x, context.key1 as Ref from LogEvent");
The second statement should count updates from "no value" to "a value":
epService.EPAdministrator.CreateEPL("create context FieldAndRefContext partition by Ref,Fieldname from LogEvent");
var countOfDataInput = epService.EPAdministrator.CreateEPL("context FieldAndRefContext SELECT context.key1 as Ref, context.key2 as Fieldname,count(*) as x from pattern[every (a=LogEvent(Value = '') -> b=LogEvent(Value != ''))]");
To read the test-logfile I use the csvInputAdapter:
CSVInputAdapterSpec csvSpec = new CSVInputAdapterSpec(ais, "LogEvent");
csvInputAdapter = new CSVInputAdapter(epService.Container, epService, csvSpec);
csvInputAdapter.Start();
I do not want to use the update listener, because I am interested only in the result of all events (probably this is not possible and this is my failure).
So after reading the csv (csvInputAdapter.Start() returns) I read all events, which are stored in the statements NewEvents-Stream.
Using 10 Entries in the CSV-File everything works fine. Using 1 Million lines it takes way to long. I tried without EPL-Statement (so just the CSV import) - it took about 5sec. With the first statement (not the complex pattern statement) I always stop after 20 minutes - so I am not sure how long it would take.
Then I changed my EPL of the first statement: I introduce a group by instead of the context.
select Ref,count(*) as x from LogEvent group by Ref
Now it is really fast - but I do not have any results in my NewEvents Stream after the CSVInputAdapter comes back...
My questions:
Is the way I want to use NEsper a supported use case or is this the root cause of my failure?
If this is a valid use case: Where is my mistake? How can I get the results I want in a performant way?
Why are there no NewEvents in my EPL-statement when using "group by" instead of "context"?
To 1), yes
To 2) this is valid, your EPL design is probably a little inefficient. You would want to understand how patterns work, by using filter indexes and index entries, which are more expensive to create but are extremely fast at discarding unneeded events.
Read:
http://esper.espertech.com/release-7.1.0/esper-reference/html_single/index.html#processingmodel_indexes_filterindexes and also
http://esper.espertech.com/release-7.1.0/esper-reference/html_single/index.html#pattern-walkthrough
Try the "previous" perhaps. Measure performance for each statement separately.
Also I don't think the CSV adapter is optimized for processing a large file. I think CSV may not stream.
To 3) check your code? Don't use CSV file for large stuff. Make sure a listener is attached.
I have this kind of data:
I need to transpose this data into something like this using Talend:
Help would be much appreciated.
dbh's suggestion should work indeed, but I did not try it.
However, I have another solution which doesn't require to change input format and is not too complicated to implement. Indeed the job has only 2 transformation components (tDenormalize and tMap).
The job looks like the following:
Explanation :
Your input is read from a CSV file (could be a database or any other kind of input)
tDenormalize component will Denormalize your column value (column 2), based on value on id column (column 1), separating fields with a specific delimiter (";" in my case), resulting as shown in 2 rows.
tMap : split the aggregated column into multiple columns, by using java's String.split() method and spreading the resulting array into multiple columns. The tMap should like like this:
Since Talend doesn't accept to store Array objects, make sure to store the splitted String in Object format. Then, cast that object into Array on the right side of the Map.
That approach should give you the expected result.
IMPORTANT:
tNormalize might shuffle the rows, meaning for bigger input, you might encounter unsorted output. Make sure to sort it if needed or use tDenormalizeSortedRow instead.
tNormalize is similar to an aggregation component meaning it scans the whole input before processing, which results into possible performance issues with particularly big inputs (tens of millions of records).
Your input is probably wrong (you have 5 entries with 1 as id, and 6 entries with 2 as id). 6 columns are expected meaning you should always have 6 lines per id. If not, then you should implement dbh's solution, and you probably HAVE TO add a column with a key.
You can use Talend's tPivotToColumnsDelimited component to achieve this. You will most likely need an additional column in your data to represent the field name.
Like "Identifier, field name, value "
Then you can use this component to pivot the data and write a file as output. If you need to process the data further, read the resulting file with tFileInoutDelimited .
See docs and an example at
https://help.talend.com/display/TalendOpenStudioComponentsReferenceGuide521EN/13.43+tPivotToColumnsDelimited
I am getting my data from denormalized table, where I keep names and actions (apart from other things). I want to create a calculated field that will return sum of workgroup names but only when there are more than five actions present in DB for given workgroup.
Here's how I have done it when I wanted to check if certain action has been registered for workgroup:
WINDOW_SUM(COUNTD(IF [action] = "ADD" THEN [workgroup_name] END))
When I try to do similar thing with count, I am getting "Cannot mix aggregate and non-aggregate arguments":
WINDOW_SUM(COUNTD(IF COUNT([Number of Records]) > 5 THEN [workgroup_name] END))
I know that there's problem with the IF clause, but don't know how to fix it.
How to change the IF to be valid? Maybe there's an easier way to do it, that I am missing?
EDIT:
(after Inox's response)
I know that my problem is mixing aggregate with non-aggregate fields. I can't use filter to do it, because I want to use it later as a part of more complicated view - filtering would destroy the whole idea.
No, the problem is to mix aggregated arguments (e.g., sum, count) with non aggregate ones (e.g., any field directly). And that's what you're doing mixing COUNT([Number of Records]) with [workgroup_name]
If your goal is to know how many workgroup_name (unique) has more than 5 records (seems like that by the idea of your code), I think it's easier to filter then count.
So first you drag workgroup_name to Filter, go to tab conditions, select By field, Number of Records, Count, >, 5
This way you'll filter only the workgroup_name that has more than 5 records.
Now you can go with a simple COUNTD(workgroup_name)
EDIT: After clarification
Okay, than you need to add a marker that is fixed in your database. So table calculations won't help you.
By definition table calculation depends on the fields that are on the worksheet (and how you decide to use those fields to partition or address), and it's only calculated AFTER being called in a sheet. That way, each time you call the function it will recalculate, and for some analysis you may want to do, the fields you need to make the table calculation correct won't be there.
Same thing applies to aggregations (counts, sums,...), the aggregation depends, well, on the level of aggregation you have.
In this case it's better that you manipulate your data prior to connecting it to Tableau. I don't see a direct way (a single calculated field that would solve your problem). What can be done is to generate a db from Tableau (with the aggregation of number of records for each workgroup_name) then export it to csv or mdb and then reconnect it to Tableau. But if you can manipulate your database outside Tableau, it's usually a better solution