Why Won't Heroku Postgres Cache Hit Rate Go Up? - postgresql

I am migrating a database to heroku. I am using pg:diagnose to try and ensure that the database will be running smoothly.
Yesterday I noted that my "overall cache hit rate" was around 94%, which is lower than the recommended 99%. My database was running on the "Premium 3" tier which has 15 GB of RAM. So I decided to upgrade to a plan with more RAM, hoping this would lead to a higher cache hit rate. I switched to "Standard 4", which has more than double the RAM. The cache hit rate was low at first, but that was because it was cold.
But now it's the next day, the cache is warm, and my "overall cache hit rate" is back to 94%, right where it started! I must have missed something - I doubled the RAM but I'm not getting any more cache hits?
I would consider upgrading to a yet higher plan, but upgrading plans doesn't seem to help. My data size is 38.9 GB, and my current plan has 30.5 GB of RAM.
Thanks in advance to anyone who can help me understand what's going on here!

The cache-hit rate you are looking at from pg:diagnose seems to be measured about the same way that PostgreSQL itself would derive it--it considers everything found in shared_buffers to be a hit, and every thing else to be a miss. But for the misses, many of them could also be found in memory, it would just be the kernels filecache memory, not PostgreSQL's shared_buffers. From a performance perspective, this should also be hits, but there is no mechanism to count them as such.
I don't know how heroku manages shared_buffers. If shared_buffers stayed the same when you increased the instance size, then you would expect the reported hit rate to also stay the same, even if the true hit rate increased (i.e. more of the buffer misses are being served out of filecache rather truly being read from disk).

Related

MongoDB Stops Responding During Background Flush

Mongodb Background Flushing blocks all the requests:
Server: Windows server 2008 R2
CPU Usage: 10 %
Memory: 64G, Used 7%, 250MB for Mongod
Disk % Read/Write Time: less than 5% (According to Perfmon)
Mongodb Version: 2.4.6
Mongostat Normally:
insert:509 query:608 update:331 delete:*0 command:852|0 flushes:0 mapped:63.1g vsize:127g faults:6449 locked db:Radius:12.0%
Mongostat Before(maybe while) Flushing:
insert:1 query:4 update:3 delete:*0 command:7|0 flushes:0 mapped:63.1g vsize:127g faults:313 locked db:local:0.0%
And Mongostat After Flushing:
insert:1572 query:1849 update:1028 delete:*0 command:2673|0 flushes:1 mapped:63.1g vsize:127g faults:21065 locked db:.:99.0%
As you see when flushes happening lock is 99% just at this point mongod stops responding any read/write operation (mongotop and mongostat also stop). The flushing takes about 7 to 8 seconds to complete which does not increase disk load more than 10%.
Is there any suggestions?
Under Windows server 2008 R2 (and other versions of Windows I would suspect, although I don't know for sure), MongoDB's (2.4 and older) background flush process imposes a global lock, doing substantial blocking of reads and writes, and the length of the flush time tends to be proportional to the amount of memory MongoDB is using (both resident and system cache for memory-mapped files), even if very little actual write activity is going on. This is a phenomenon we ran into at our shop.
In one replica set where we were using MongoDB version 2.2.2, on a host with some 128 GBs of RAM, when most of the RAM was in use either as resident memory or as standby system cache, the flush time was reliably between 10 and 15 seconds under almost no load and could go as high as 30 to 40 seconds under load. This could cause Mongo to go into long pauses of unresponsiveness every minute. Our storage did not show signs of being stressed.
The basic problem, it seems, is that Windows handles flushing to memory-mapped files differently than Linux. Apparently, the process is synchronous under Windows and this has a number of side effects, although I don't understand the technical details well enough to comment.
MongoDb, Inc., is aware of this issue and is working on optimizations to address it. The problem is documented in a couple of tickets:
https://jira.mongodb.org/browse/SERVER-13444
https://jira.mongodb.org/browse/SERVER-12401
What to do?
The phenomenon is tied, to some degree, to the minimum latency of the disk subsystem as measured under low stress, so you might try experimenting with faster disks, if you can. Some improvements have been reported with this approach.
A strategy that worked for us in some limited degree is avoiding provisioning too much RAM. It happened that we really didn't need 128 GBs of RAM, so by dialing back on the RAM, we were able to reduce the flush time. Naturally, that wouldn't work for everyone.
The latest versions of MongoDB (2.6.0 and later) seem to handle the
situation better in that writes are still blocked during the long
flush but reads are able to proceed.
If you are working with a sharded cluster, you could try dividing the RAM by putting multiple shards on the same host. We didn't try this ourselves, but it seems like it might have worked. On the other hand, careful design and testing would be highly recommended in any such scenario to avoid compromising performance and/or high availability
We tried playing with syncdelay. Reducing it didn't help (the long flush times just happened more frequently). Increasing it helped a little (there was more time between flushes to get work done), but increasing it too much can exacerbate the problem severely. We boosted the syncdelay to five minutes (300 seconds), at one point, and were rewarded with a background flush of 20 minutes.
Some optimizations are in the works at MongoDB, Inc. These may be available soon.
In our case, to relieve the pressure on the primary host, we periodically rebooted one of the secondaries (clearing all memory) and then failed over to it. Naturally, there is some performance hit due to re-caching, and I think this only worked for us because our workload is write-heavy. Moreover, this technique not in any sense a solution. But if high flush times are causing serious disruption, this may be one way to "reduce the fever" so to speak.
Consider running on Linux... :-)
Background flush by default does not block read/write. mongod does flush every 60s, unless otherwise specified with -syncDelay parameter. syncDelay uses fsync() operation, which can set to block write while in-memory pages flush to disk. A blocked write could have potential to block reads as well. Read more: http://docs.mongodb.org/manual/reference/command/fsync/
However, normally a flush should not take more than 1000ms (1 second). If it does, it is likely the amount of data flushing to disk is too large for your disk to handle.
Solution: upgrade to a faster disk like SSD, or decrease flush interval (try 30s, rather than the default 60s).

MongoDB, NUMA hardware, page faults but enough RAM for working set, touch command or vmtouch/dd does not load into memory

MongoDB 2.46 & 2.4.8
Use case:
Load up 100.000 documents on a collection with 2 indexes. Resident memory increases (mongostat), and no page faults happen.
Restart mongod. Resident memory is low (this is expected)
Try to 'preheat' mongo, with touch command db.runCommand({ touch: collection, data: true, index: true }) or other means (on OS, vmtouch / dd)
a) On this step, on my development machine (MacOS), I see in mongostat a lot of page faults trying to heat it up (expected) and the resident memory is raised. From that point on, any updates do not raise page faults
b) On a numa server (256 GB RAM), even though I started up mongo with this guide: http://docs.mongodb.org/manual/administration/production-notes/#mongodb-on-numa-hardware (note: I do not have superuser access. However, the 2nd step, echoing 0 in /proc/sys/vm/zone_reclaim_mode, is already 0 so I left it like that), I cannot seem to be able to pre-heat the memory with the 'touch' command. Nothing happens, even though it returns successfully. In mongostat, only 'mapped' and 'vsize' is getting higher, and resident memory is the same (35m). I even tried to load up the data files in OS's memory with vmtouch and dd commands. Only re-indexing the collection changed the resident memory.
The problem started a while after I began to load up data into the server. I do a lot of upserts and the performance was awesome in the beginning (3000 - 4000 upserts/sec). This was expected because the working set would be able to fit in memory. After 30.000.000 documents the process seems to make a lot of page faults and I do not know why. The data files are approx. 33GB and the performance is about 500 upserts/sec, with a lot of page faults. That should mean that the working set is not in memory. However, 256GB RAM should be more than enough. I tried the 'touch' command, but resident memory was low (I even restarted the mongod process, ran the touch command, and even though 'mapped' and 'vsize' skyrocketed to a lot of GB, resident memory kept low, 35m). I tried to reIndex the collection and voilĂ , resident memory went from 35m -> 20GB. However, again, I saw page faults. Then I tried to vmtouch the data files (or with dd). Again, a lot of page faults.
The problem is that I cannot have 'only' 500 upserts/sec. Should I change my application logic? I thought with 256GB memory my 'active' working set (expected 60GB) should fit in memory. I am in the middle (30GB) and it seems that I cannot do anything to fix this. Is it the numa hardware? Should I make any other changes?
Thanks in advance
I just wrote a pretty detailed answer over on ServerFault regarding resident memory, page faulting, and how to troubleshoot, tweak and tune etc. so I will not re-hash that here.
I will say that Sammaye's comment is correct, the touch (or dd, vmtouch etc.) command will not cause memory to be reported as resident agains the mongod process until the process actually accesses the data (until then it is just in the FS cache), and then you can hit the issue in SERVER-9415 which can cause resident memory to be under reported.
I think you are already looking at the key metrics here, and you should be able to achieve higher resident memory than you are reporting (or at least, get more data into memory without significant page faults being seen). The situation you are describing sounds like memory pressure from elsewhere but I am assuming you would have notices another process eating significant amounts of memory.
What I will note is that I have previously spent days (literally) attempting to make a particular AWS instance go above a 30% memory threshold without success.
When we finally gave up and tried on another instance, without changing a thing (we just added a new instance as a secondary and failed over to it) it instantly went to over 70% resident memory. Granted, that was on m2.4xlarge instances, so not at the same scale as yours, but it's always worth bearing in mind. If you can try it on another instance, I would recommend giving it a shot.

How to keep 32 bit mongodb memory usage down on changing dataset

I'm using MongoDB on a 32 bit production system, which sucks but it's out of my control right now. The challenge is to keep the memory usage under ~2.5GB since going over this will cause 32 bit systems to crash.
According to the mongoDB team, the best way to track the memory usage is to use your operating system's process tracking system (i.e. ps or htop on Unix systems; Process Explorer on Windows.) for virtual memory size.
The DB mainly consists of one table which is continually cycling data, i.e. receiving data at regular intervals from sensors, and every day a cron job wipes all data from before the last 3 days. Over a period of time, the memory usage slowly increases. I took some notes over time using db.serverStats(), db.lectura.totalSize() and ps, shown in the chart below. Note that the size of the table in question has reduced in the last month but the memory usage increased nonetheless.
Now, there is some scope for adjustment in how many days of data I store. Today I deleted basically half of the data, and then restarted mongodb, and yet the mem virtual / mem mapped and most importantly memory usage according to ps have hardly changed! Why do these not reduce when I wipe data (and restart)? I read some other questions where people said that mongo isn't really using all the memory that it might appear to be using, and that you can't clear the cache or limit memory use. But then how can I ensure I stay under the 2.5GB limit?
Unless there is a way to stem this dataset-size-irrespective gradual increase in memory usage, it seems to me that the 32-bit version of Mongo is unuseable. Note: I don't mind losing a bit of performance if it solves the problem.
To answer regarding why the mapped and virtual memory usage does not decrease with the deletes, the mapped number is actually what you get when you mmap() the entire set of data files. This does not shrink when you delete records, because although the space is freed up inside the data files, they are not themselves reduced in size - the files are just more empty afterwards.
Virtual will include journal files, and connections, and other non-data related memory usage also, but the same principle applies there. This, and more, is described here:
http://www.mongodb.org/display/DOCS/Checking+Server+Memory+Usage
So, the 2GB storage size limitation on 32-bit will actually apply to the data files whether or not there is data in them. To reclaim deleted space, you will have to run a repair. This is a blocking operation and will require the database to be offline/unavailable while it was run. It will also need up to 2x the original size in terms of free disk space to be able to run the repair, since it essentially represents writing out the files again from scratch.
This limitation, and the problems it causes, is why the 32-bit version should not be run in production, it is just not suitable. I would recommend getting onto a 64-bit version as soon as possible.
By the way, neither of these figures (mapped or virtual) actually represents your resident memory usage, which is what you really want to look at. The best way to do this over time is via MMS, which is the free monitoring service provided by 10gen - it will graph virtual, mapped and resident memory for you over time as well as plenty of other stats.
If you want an immediate view, run mongostat and check out the corresponding memory columns (res, mapped, virtual).
In general, when using 64-bit builds with essentially unlimited storage, the data will usually greatly exceed the available memory. Therefore, mongod will use all of the available memory it can in terms of resident memory (which is why you should always have swap configured to the OOM Killer does not come into play).
Once that is used, the OS does not stop allocating memory, it will just have the oldest items paged out to make room for the new data (LRU). In other words, the recycling of memory will be done for you, and the resident memory level will remain fairly constant.
Your options for stretching 32-bit are limited, but you can try some things. The thing that you run out of is address space, and the increases in the sizes of additional database files mean that you would like to avoid crossing over the boundary from "n" files to "n+1". It may be worth structuring your data into more or fewer databases so that you can get the maximum amount of actual data into memory and as little as possible "dead space".
For example, if your database named "mydatabase" consists of the files mydatabase.ns (the namespace file) at 16 MB, mydatabase.0 at 64 MB, mydatabase.1 at 128 MB and mydatabase.2 at 256 MB, then the next file created for this database will be mydatabase.3 at 512 MB. If instead of adding to mydatabase you instead created an additional database "mynewdatabase" it would start life with mynewdatabase.ns at 16 MB and mynewdatabase.0 at 64 MB ... quite a bit smaller than the 512 MB that adding to the original database would be. In fact, you could create 4 new databases for less space than would be consumed by adding a new file to the original database, and because the files are smaller they would be easier to fit into contiguous blocks of memory.
It is a well-known message that 32-bit should not be used for production.
Use 64-bit systems.
Point.

Postgres causing swapping on CentOS

All,
I am running CentOS 6.0 with Postgresql 8.4 and can't seem to figure out how to prevent so much disc swap from occurring. I have 12 gigs of RAM and 4 processors and I am doing some simple updates (1 table at a time). I thought for a minute that the inserts happening in parallel from a script I wrong was causing the large memory usage but when I saw the simple update causing it too I basically threw in the towel and decided to ask for help.
I pasted the conf file here. http://pastebin.com/e0jdBu0J
You can see that I set the buffers relatively low and the connection amounts high. The DB service will not start if I set the shared buffers any higher than 64 megs. Anyone have an idea what may be causing this for me?
Thanks,
Adam
If you're going into swap, increasing shared_buffers will make the problem worse; you'll be taking RAM away from the part that's running out and swapping, instead dedicating memory to the database caching. It's worth fixing SHMMAX etc. just on general principle and for later tuning work, but that's not going to help with this problem.
Guessing at the identify of your memory gobbling source is a crapshoot. Far better to look at data from "top -c" and ps to find which processes are using a lot of it. It's possible for a really bad query to consume way more memory than it should. If you see memory use spike up for a PostgreSQL process running something, check the process ID against the information in pg_stat_tables to see what it's doing.
There are a couple of things that can cause this sort of issue that often surprise people. If you are doing a large number of row updates in a single transaction, and there are foreign key checks or triggers involved, that can run out of memory. The queue of things to check in each of those cases is kept in RAM, and can be surprisingly big.
There are two problems with your PostgreSQL settings that might be related. Databases don't actually work very well if you have a lot more active connections than cores in the server; best performance is normally 2 to 3 active clients per core. And all sorts of things go wrong once you've got more than a few hundred connection. There is some connections^2 behavior that gets ugly there performance wise, and there are some memory issues too. If you really need 1250 connections, you should be using a connection pooler such as pgBouncer or pgpool-II.
And effective_io_concurrency = 1000 is way too high for any hardware on the planet. Useful values for that in a small multiple of how many disks you have in the server. I have no idea what happens as far as memory usage goes when you set it that high, but it's not been tested very well at that range. Normal settings more like 1 to 25. The parameters outlined at Tuning Your PostgreSQL Server are much more important than it is; the concurrency value only impacts one particular type of table scan.
Centos 6 seems to have a very conservative shmmax as a default
Set your shared buffers to that recommended by postgres tuning resources
see for explanation and how to set.
To experiment you can (as root) use sysctl -w kernel.shmmax = n
where n is the value that the startup error message that postgres is trying to allocate on startup. When you identify the value you wish to use permanently then set that in /etc/sysctl.conf

Reduce Membase quota per bucket to 5 MB

In Heroku, I notice that they limit my free Memcached Bucket (actually Membase) to 5MB. However, I tried it on my own server and cannot set Bucket quota to less than 64MB (per node, and for Memcached bucket type). For Membase bucket type, it's even more: 100MB.
Hmm, my server have a humble amount of RAM. And I need to allocate a very small amount of Memcached. Please advice.
Heroku is running a slightly modified version of our memcached software that lets them keep the bucket overhead very low. Unfortunately the "productized" version has some limits imposed to prevent the software from getting itself into trouble.
Especially for Membase buckets, we need at least 100mb in order to safely run.
You may be able to reduce/eliminate these limits if you recompile the source, but that wouldn't be a supported configuration.
Perry
Sorry for the delay in getting back to this...
As with any piece of software, there are internal data structures that need RAM to run...that's what gets allocated immediately with Membase.
If you install memcached, it will use as much RAM as you configure it to use...no more, no less.