Error with nonlinear constraint function evaluation - matlab

I am trying to use a genetic algorithm for the first time. I am having trouble with an error.
Error using ga (line 393)
Unrecognized function or variable 'A_unfinned'.
Error in microprocessor_ga_Sanders (line 10)
[best_X,best_Objective] =
ga(#microprocessor_cost,NVARS,[],[],[],[],lb,ub,#Constraint_function_microprocessor_Sanders,INTCON,options)
Caused by:
Failure in initial user-supplied nonlinear constraint function evaluation.
I would like some help trying to assess the problem. I have been working on this for hours and cant figure it out.
clc
clear
close all
options = optimoptions('ga','Display','iter','ConstraintTolerance',0);
NVARS=3;
lb=[1, 0.0005, 0.0005];
ub=[30, 0.03, 0.03];
INTCON = [1];
[best_X,best_Objective] = ga(#microprocessor_cost,NVARS,[],[],[],[],lb,ub,#Constraint_function_microprocessor_Sanders,INTCON,options)
I will attach all of the functions I refer to in my code.
Objective function:
function [cost] = microprocessor_cost(X)
%function to determine the cost of an aluminum, rectangular heat sink
% N is the number of fins
% L is the length of the fins
% t is the thickness of fins
% b is the height of the base of the heat sink
w=0.0508; %w and r are hardcoded for the specific problem
r=0.0508;
b=0.002;
N=X(:,1);
L=X(:,2);
t=X(:,3);
volume_base=b*w*r;
volume_fins=L*w*t*N;
volume_total=volume_base+volume_fins;
cost=volume_total*849064;
end
Constraint function:
function [C, Ceq] = Constraint_function_microprocessor_Sanders(X)
%C is vector of inequality constraints. GA keeps it less than zero, i.e. C<0 and only solutions with C<0 are feasible
%Ceq is vecor of equality constraints (we have none). GA keeps it equal to zero, i.e. Ceq=0, and only solutions with Ceq=0 ARE FEASIBLE
Resistance = resistance_microprocessor(X);
%the following will make unrealistic designs infeasible
if A_unfinned<0
Resistance = 1000;
end
Target_Resistance=50/15;
C = Resistance - Target_Resistance; % C<0, implies Resistance<Target_Resistance
Ceq = [];
end
Resistance Function:
function [Resistance] = resistance_microprocessor(X)
%UNTITLED4 Summary of this function goes here
% Detailed explanation goes here
%2in by 2in microprocessor - assuming that the width and length of the heat
%sink is equal to the width and length of the microprocessor
%2in = 0.0508m
w=0.0508; %m
l=0.0508; %m 2x2 inch microprocessor
fins=X(:,1);
L=X(:,2);
t=X(:,3);
%assuming no thermal grease between microprocessor and heat sink
contact_resistance_per_area=0.001; %K/(W*m^2)
Tamb=30+273; %K
v=0.000021; %m^2/s
Pr=0.7;
k_air=0.03; %W/(m*K)
%% Design deciscions
Tambient=293; %K, ambient air temperature
b=0.002; %m, height of base of heat sink
k=240; %W/(m*K), aluminum fins
%% Calculations
%calculated, (80+30)/2 = 55, (55+80)/2 = 42.5
Tfilm=42.5+273; %K
%chosen length of fins: 75 mm, which is the maximum length, Lc for vertical
%plate = L
Lc=0.075; %m,
%solve for natural convection coefficient
h=function_get_convection_coefficient(Tfilm,Tamb,Lc,v,Pr,k_air); %W/m^2
%constraint - must be able to dissipate 15 W
q=15; %W
%thermal network calculations - thermal resistances
%contact resistance
area_transistor=w*l;
R_contact=contact_resistance_per_area*area_transistor;
%resistance - conduction through base
A_base=l*w;
R_base=b/(k*A_base);
%fin thermal resistance - convection
n=function_get_fin_efficiency(h,L,t,w,k); %fin efficiency using function
surf_area_fins=fins*2*(L*w); %ignoring the convection through the end and through top and bottom
R_fins=1/(h*surf_area_fins*n);
%unfinned thermal resistance
A_unfinned=(l-(fins*t))*w;
R_unfinned=1/(h*A_unfinned);
%overall thermal resistance of system
Resistance=R_contact+R_base+(1/(1/R_fins)+(1/R_unfinned));
end

Actually, the error output directly tells you what the problem is.
In your function Constraint_function_microprocessor_Sanders the variable A_unfinned does not exist.
To resolve this, you might want to pass it from your function resistance_microprocessor(X). This means, doing the following changes:
Change function [Resistance] = resistance_microprocessor(X) to
function [Resistance,A_unfinned] = resistance_microprocessor(X)
In function Constraint_function_microprocessor_Sanders change Resistance = resistance_microprocessor(X); to[Resistance,A_unfinned] = resistance_microprocessor(X);
If there are no other problems, this might help.
Alternative:
Another possibility to resolve this might be to move
if A_unfinned<0
Resistance = 1000;
end
to the end of the resistance_microprocessor function.

Related

How do I implement multiple sub-intervals onto this code?

I am trying to optimize the function under the mathematical assumption given below (it essentially breaks down the current interval in the code into multiple subintervals but how do I even implement it?):
[the mathematical theory]- It is well known that the Trapezoid rule gives a more accurate approximation if the intervals are broken up into smaller intervals so that: I1 = [a; b1], I2 = [b1; b2], I3 = [b2; b3],...,I n-1 = [b n-1, bn] where bn = b. Write a program that implements this strategy using your NC.m code from above. It should be able to complete the task for an arbitrary n. How many sub-intervals must be created to get an "accurate" integral approximation of the function listed below on the interval [-3:0]?
%For this problem write a script file called NC.m that implements
%the Newton-Cotes method of integration for an arbitrary function f(x). It
%should takes as inputs the function and the limits of integration [a: b] and
%output the value of the definite integral. Specifically, you should use the
%Trapezoid rule as presented in Equation (11.73)
function [f]= NC(a,b,fun) %newton-cotes
%a and b are limits of integration
%setting it up
fa= fun(a); %y value for lower limit
fb= fun(b); %y value for upper limit
%the actual function
f= (b-a)*(fa+fb)/2;
end
%Result from estimation
%fun= #(x) normpdf(x)
%[f]= NC(-3,0,fun)- 0.6051
%not accurate when compared to results from actual calculation
%syms x
%f= normpdf(x);
%a= -3;- lower limit
%b= 0;- higher limit
%int(f, a, b)- 0.4897
Please help. It would be greatly appreciated!

Monte Carlo simulation for approximating delta in Matlab

I need to code the Monte Carlo algorithm for approximating delta to Matlab and calculate confidence intervals:
but for some reason my code doesn't work, any ideas why?
randn('state', 100)
%Problem and method parameters
S=10; E=9; sigma=0.1; r=0.06; T=1;
Dt=1e-3; N=T/Dt; M=2^17;h=10^(-4);
delta = zeros(M,1);
for i = 1:M
Sfinal = S*exp((r-0.5*sigma^2)*T+sigma*sqrt(T).*randn(M,1));
S_h = (S+h)*exp((r-0.5*sigma^2)*T+sigma*sqrt(T).*randn(M,1));
delta(i) = exp(-r*T).*(max(Sfinal-E,0)-max(S_h-E,0))/h;
end
aM=mean(delta);
bM=std(delta);
conf=[aM-1.96*bM/sqrt(M),aM+1.96*bM/sqrt(M)]
The error message is
"Unable to perform assignment because the left and right sides have a different number of elements."
Any help is appreciated!
You do not need to explicitly write the for loop since you have already vectorized it. In other words, Sfinal and S_h are vectors of length M, and their i-th entries correspond to S_i and S^h_i in the image. Since the right hand side of the delta expression evaluates to a vector of length M, which contains all the values of delta, you should assign that vector directly to delta, not delta(i).
One more thing: the pseudo-code in the image seems to suggest that the same random number should be used for calculating both S_i and S^h_i. This is not the case in your code, since you call randn separately for calculating Sfinal and S_h. I think you should generate the random samples once, save them, and then use it for both calculations.
Here's the code:
randn('state', 100)
%Problem and method parameters
S=10; E=9; sigma=0.1; r=0.06; T=1;
Dt=1e-3; N=T/Dt; M=2^17;h=10^(-4);
xi = randn(M,1);
Sfinal = S*exp((r-0.5*sigma^2)*T+sigma*sqrt(T).*xi);
S_h = (S+h)*exp((r-0.5*sigma^2)*T+sigma*sqrt(T).*xi);
delta = exp(-r*T).*(max(Sfinal-E,0)-max(S_h-E,0))/h;
aM=mean(delta);
bM=std(delta);
conf=[aM-1.96*bM/sqrt(M),aM+1.96*bM/sqrt(M)]

Attempted to access sym(67); index out of bounds because numel(sym)=2

I am receiving the following error message:
Attempted to access sym(67); index out of bounds because numel(sym)=2.
I have been working on this for three days. I looked for similar error, but it didn't help. My code is below:
filename='DriveCyclesCP.xlsx';
V=xlsread('DriveCyclesCP.xlsx',2,'C9:C774'); % Get the velocity values, they are in an array V.
N=length(V); % Find out how many readings
mass = 1700 ; % Vehicle mass+ two 70 kg passengers.
area_Cd = 0.75; % Frontal area in square metres
Crr=0.009; %rolling resistance
g=9.8; % gravity acceleration
T=774; %UDDS cycle time duration
V_ave = 21.5; % UDDS avearage speed im m/s
rd=0.3; % Effective tire radius
Qhv =12.22; % E85 low Heating value in kWh/kg
Vd = 2.189; % engine size in L
md=0.801; % mass density of Ethanol
mf =Vd*md; % mf is the fuel mass consumed per cycle
Per = zeros(1,N); % engine power for each point of the drive cycle
a = zeros(1,N); % acceleration
SFC = zeros(1,N); % specific fuel consumption
Wc = zeros (1,N); % mass flow rate
nf = zeros (1,N); %fuel efficiency
Pm = zeros (1,N); % motor power
Pt = zeros (1,N);
Te =zeros (1,N); % Engine Troque
Tt = zeros (1,N);
Tm =zeros (1,N);
we =zeros (1,N); % Engine rot speed
wt = zeros (1,N);
wm =zeros (1,N);
S =zeros (1,8);
int (sym ('C'));
for C=1:N
a(C)=V(C+1)-V(C);
Pt(C)= V(C)*(mass*g*Crr + (0.5*area_Cd*1.202*(V(C))^2) + mass*a(C))/1000;
Per(C)=(mass*g*Crr +0.5*area_Cd*1.202*(V(C))^2 +mass*g*0.03)/1000*0.85;% e
syms Te(C) Tt(C) Tm(C) wt(C) we(C) wm(C) k1 k2
S = solve( Pm(C)==Pt(C) - Per(C), Tt(C)*wt(C)== Pt(C), Tt(C)*wt(C)== Te(C)*we(C) + Tm(C)*wm(C), wt(C)==we(C)/k1, wt(C)==wm(C)/k2, Pm(C)==wm(C) *Tm(C), Per(C)==we(C) *Te(C), Tt == k1*Te + k2*Tm );
end
The problem is on the line
int (sym ('C'));
You have defined sym to be a matrix with 2 entries somewhere (either earlier in the code or in a previous mfile), thus it treats sym as a matrix instead of a function. Thus when Matlab gets to the statement sym('C') it first converts the character 'C' to its ASCII integer representation (this just happens to be the number 67), then it tries to calculate sym(67) which is impossible as sym only has 2 elements.
Thus you have to stop sym from being a matrix (variable) and let it be a function again. There are two ways to solve this, either you can start you file with the statement clear;, this will remove all variables in memory, which might not be what you want; or you can use a function instead of script, as this hides all variables that have been defined previously and prevents this sort of error.
Note the line numel(X) is a way to measure how many elements are in X. Thus numel(sym)=2 means that sym has 2 elements.
P.S. There is an error in the lines (notice that I only taken some of the lines of you code)
N=length(V); % Find out how many readings
for C=1:N
a(C)=V(C+1)-V(C);
end
When C becomes equal to N, then V(C+1) will generate an error.

Getting unexpected results while using ode45

I am trying to solve a system of differential equations by writing code in Matlab. I am posting on this forum, hoping that someone might be able to help me in some way.
I have a system of 10 coupled differential equations. It is a vector-host epidemic model, which captures the transmission of a disease between human population and insect population. Since it is a simple system of differential equations, I am using solvers (ode45) for non-stiff problem type.
There are 10 differential equations, each representing 10 different state variables. There are two functions which have the same system of 10 coupled ODEs. One is called NoEffects_derivative_6_15_2012.m which contains the original system of ODEs. The other function is called OnlyLethal_derivative_6_15_2012.m which contains the same system of ODEs with an increased withdrawal rate starting at time, gamma=32 %days and that withdrawal rate decays exponentially with time.
I use ode45 to solve both the systems, using the same initial conditions. Time vector is also the same for both systems, going from t0 to tfinal. The vector tspan contains the time values going from t0 to tfinal, each with a increment of 0.25 days, making a total of 157 time values.
The solution values are stored in matrices ye0 and yeL. Both these matrices contain 157 rows and 10 columns (for the 10 state variable values). When I compare the value of the 10th state variable, for the time=tfinal, in the matrix ye0 and yeL by plotting the difference, I find it to be becoming negative for some time values. (using the command: plot(te0,ye0(:,10)-yeL(:,10))). This is not expected. For all time values from t0 till tfinal, the value of the 10 state variable, should be greater, as it is the solution obtained from a system of ODEs which did not have an increased withdrawal rate applied to it.
I am told that there is a bug in my matlab code. I am not sure how to find out that bug. Or maybe the solver in matlab I am using (ode45) is not efficient and does give this kind of problem. Can anyone help.
I have tried ode23 and ode113 as well, and yet get the same problem. The figure (2), shows a curve which becomes negative for time values 32 and 34 and this is showing a result which is not expected. This curve should have a positive value throughout, for all time values. Is there any other forum anyone can suggest ?
Here is the main script file:
clear memory; clear all;
global Nc capitalambda muh lambdah del1 del2 p eta alpha1 alpha2 muv lambdav global dims Q t0 tfinal gamma Ct0 b1 b2 Ct0r b3 H C m_tilda betaHV bitesPERlanding IC global tspan Hs Cs betaVH k landingARRAY muARRAY
Nhh=33898857; Nvv=2*Nhh; Nc=21571585; g=354; % number of public health centers in Bihar state %Fix human parameters capitalambda= 1547.02; muh=0.000046142; lambdah= 0.07; del1=0.001331871263014; del2=0.000288658; p=0.24; eta=0.0083; alpha1=0.044; alpha2=0.0217; %Fix vector parameters muv=0.071428; % UNIT:2.13 SANDFLIES DEAD/SAND FLY/MONTH, SOURCE: MUBAYI ET AL., 2010 lambdav=0.05; % UNIT:1.5 TRANSMISSIONS/MONTH, SOURCE: MUBAYI ET AL., 2010
Ct0=0.054;b1=0.0260;b2=0.0610; Ct0r=0.63;b3=0.0130;
dimsH=6; % AS THERE ARE FIVE HUMAN COMPARTMENTS dimsV=3; % AS THERE ARE TWO VECTOR COMPARTMENTS dims=dimsH+dimsV; % THE TOTAL NUMBER OF COMPARTMENTS OR DIFFERENTIAL EQUATIONS
gamma=32; % spraying is done of 1st feb of the year
Q=0.2554; H=7933615; C=5392890;
m_tilda=100000; % assumed value 6.5, later I will have to get it for sand flies or mosquitoes betaHV=66.67/1000000; % estimated value from the short technical report sent by Anuj bitesPERlanding=lambdah/(m_tilda*betaHV); betaVH=lambdav/bitesPERlanding; IC=zeros(dims+1,1); % CREATES A MATRIX WITH DIMS+1 ROWS AND 1 COLUMN WITH ALL ELEMENTS AS ZEROES
t0=1; tfinal=40; for j=t0:1:(tfinal*4-4) tspan(1)= t0; tspan(j+1)= tspan(j)+0.25; end clear j;
% INITIAL CONDITION OF HUMAN COMPARTMENTS q1=0.8; q2=0.02; q3=0.0005; q4=0.0015; IC(1,1) = q1*Nhh; IC(2,1) = q2*Nhh; IC(3,1) = q3*Nhh; IC(4,1) = q4*Nhh; IC(5,1) = (1-q1-q2-q3-q4)*Nhh; IC(6,1) = Nhh; % INTIAL CONDITIONS OF THE VECTOR COMPARTMENTS IC(7,1) = 0.95*Nvv; %80 PERCENT OF TOTAL ARE ASSUMED AS SUSCEPTIBLE VECTORS IC(8,1) = 0.05*Nvv; %20 PRECENT OF TOTAL ARE ASSUMED AS INFECTED VECTORS IC(9,1) = Nvv; IC(10,1)=0;
Hs=2000000; Cs=3000000; k=1; landingARRAY=zeros(tfinal*50,2); muARRAY=zeros(tfinal*50,2);
[te0 ye0]=ode45(#NoEffects_derivative_6_15_2012,tspan,IC); [teL yeL]=ode45(#OnlyLethal_derivative_6_15_2012,tspan,IC);
figure(1) subplot(4,3,1); plot(te0,ye0(:,1),'b-',teL,yeL(:,1),'r-'); xlabel('time'); ylabel('S'); legend('susceptible humans'); subplot(4,3,2); plot(te0,ye0(:,2),'b-',teL,yeL(:,2),'r-'); xlabel('time'); ylabel('I'); legend('Infectious Cases'); subplot(4,3,3); plot(te0,ye0(:,3),'b-',teL,yeL(:,3),'r-'); xlabel('time'); ylabel('G'); legend('Cases in Govt. Clinics'); subplot(4,3,4); plot(te0,ye0(:,4),'b-',teL,yeL(:,4),'r-'); xlabel('time'); ylabel('T'); legend('Cases in Private Clinics'); subplot(4,3,5); plot(te0,ye0(:,5),'b-',teL,yeL(:,5),'r-'); xlabel('time'); ylabel('R'); legend('Recovered Cases');
subplot(4,3,6);plot(te0,ye0(:,6),'b-',teL,yeL(:,6),'r-'); hold on; plot(teL,capitalambda/muh); xlabel('time'); ylabel('Nh'); legend('Nh versus time');hold off;
subplot(4,3,7); plot(te0,ye0(:,7),'b-',teL,yeL(:,7),'r-'); xlabel('time'); ylabel('X'); legend('Susceptible Vectors');
subplot(4,3,8); plot(te0,ye0(:,8),'b-',teL,yeL(:,8),'r-'); xlabel('time'); ylabel('Z'); legend('Infected Vectors');
subplot(4,3,9); plot(te0,ye0(:,9),'b-',teL,yeL(:,9),'r-'); xlabel('time'); ylabel('Nv'); legend('Nv versus time');
subplot(4,3,10);plot(te0,ye0(:,10),'b-',teL,yeL(:,10),'r-'); xlabel('time'); ylabel('FS'); legend('Total number of human infections');
figure(2) plot(te0,ye0(:,10)-yeL(:,10)); xlabel('time'); ylabel('FS(without intervention)-FS(with lethal effect)'); legend('Diff. bet. VL cases with and w/o intervention:ode45');
The function file: NoEffects_derivative_6_15_2012
function dx = NoEffects_derivative_6_15_2012( t , x )
global Nc capitalambda muh del1 del2 p eta alpha1 alpha2 muv global dims m_tilda betaHV bitesPERlanding betaVH
dx = zeros(dims+1,1); % t % dx
dx(1,1) = capitalambda-(m_tilda)*bitesPERlanding*betaHV*x(1,1)*x(8,1)/(x(7,1)+x(8,1))-muh*x(1,1);
dx(2,1) = (m_tilda)*bitesPERlanding*betaHV*x(1,1)*x(8,1)/(x(7,1)+x(8,1))-(del1+eta+muh)*x(2,1);
dx(3,1) = p*eta*x(2,1)-(del2+alpha1+muh)*x(3,1);
dx(4,1) = (1-p)*eta*x(2,1)-(del2+alpha2+muh)*x(4,1);
dx(5,1) = alpha1*x(3,1)+alpha2*x(4,1)-muh*x(5,1);
dx(6,1) = capitalambda -del1*x(2,1)-del2*x(3,1)-del2*x(4,1)-muh*x(6,1);
dx(7,1) = muv*(x(7,1)+x(8,1))-bitesPERlanding*betaVH*x(7,1)*x(2,1)/(x(6,1)+Nc)-muv*x(7,1);
%dx(8,1) = lambdav*x(7,1)*x(2,1)/(x(6,1)+Nc)-muvIOFt(t)*x(8,1);
dx(8,1) = bitesPERlanding*betaVH*x(7,1)*x(2,1)/(x(6,1)+Nc)-muv*x(8,1);
dx(9,1) = (muv-muv)*x(9,1);
dx(10,1) = (m_tilda)*bitesPERlanding*betaHV*x(1,1)*x(8,1)/x(9,1);
The function file: OnlyLethal_derivative_6_15_2012
function dx=OnlyLethal_derivative_6_15_2012(t,x)
global Nc capitalambda muh del1 del2 p eta alpha1 alpha2 muv global dims m_tilda betaHV bitesPERlanding betaVH k muARRAY
dx=zeros(dims+1,1);
% the below code saves some values into the second column of the two arrays % t muARRAY(k,1)=t; muARRAY(k,2)=artificialdeathrate1(t); k=k+1;
dx(1,1)= capitalambda-(m_tilda)*bitesPERlanding*betaHV*x(1,1)*x(8,1)/(x(7,1)+x(8,1))-muh*x(1,1);
dx(2,1)= (m_tilda)*bitesPERlanding*betaHV*x(1,1)*x(8,1)/(x(7,1)+x(8,1))-(del1+eta+muh)*x(2,1);
dx(3,1)=p*eta*x(2,1)-(del2+alpha1+muh)*x(3,1);
dx(4,1)=(1-p)*eta*x(2,1)-(del2+alpha2+muh)*x(4,1);
dx(5,1)=alpha1*x(3,1)+alpha2*x(4,1)-muh*x(5,1);
dx(6,1)=capitalambda -del1*x(2,1)-del2*( x(3,1)+x(4,1) ) - muh*x(6,1);
dx(7,1)=muv*( x(7,1)+x(8,1) )- bitesPERlanding*betaVH*x(7,1)*x(2,1)/(x(6,1)+Nc) - (artificialdeathrate1(t) + muv)*x(7,1);
dx(8,1)= bitesPERlanding*betaVH*x(7,1)*x(2,1)/(x(6,1)+Nc)-(artificialdeathrate1(t) + muv)*x(8,1);
dx(9,1)= -artificialdeathrate1(t) * x(9,1);
dx(10,1)= (m_tilda)*bitesPERlanding*betaHV*x(1,1)*x(8,1)/x(9,1);
The function file: artificialdeathrate1
function art1=artificialdeathrate1(t)
global Q Hs H Cs C
art1= Q*Hs*iOFt(t)/H + (1-Q)*Cs*oOFt(t)/C ;
The function file: iOFt
function i = iOFt(t)
global gamma tfinal Ct0 b1
if t>=gamma && t<=tfinal
i = Ct0*exp(-b1*(t-gamma));
else
i =0;
end
The function file: oOFt
function o = oOFt(t)
global gamma Ct0 b2 tfinal
if (t>=gamma && t<=tfinal)
o = Ct0*exp(-b2*(t-gamma));
else
o = 0;
end
If your working code is even remotely as messy as the code you posted, then that should IMHO the first thing you should address.
I cleaned up iOFt, oOFt a bit for you, since those were quite easy to handle. I tried my best at NoEffects_derivative_6_15_2012. What I'd personally change to your code is using decent indexes. You have 10 variables, there is no way that if you let your code rest for a few weeks or months, that you will remember what state 7 is for example. So instead of using (7,1), you might want to rewrite your ODE either using verbose names and then retrieving/storing them in the x and dx vectors. Or use indexes that make it clear what is happening.
E.g.
function ODE(t,x)
insectsInfected = x(1);
humansInfected = x(2);
%etc
dInsectsInfected = %some function of the rest
dHumansInfected = %some function of the rest
% etc
dx = [dInsectsInfected; dHumansInfected; ...];
or
function ODE(t,x)
iInsectsInfected = 1;
iHumansInfected = 2;
%etc
dx(iInsectsInfected) = %some function of x(i...)
dx(iHumansInfected) = %some function of x(i...)
%etc
When you don't do such things, you might end up using x(6,1) instead of e.g. x(3,1) in some formulas and it might take you hours to spot such a thing. If you use verbose names, it takes a bit longer to type, but it makes debugging a lot easier and if you understand your equations, it should be more obvious when such an error happens.
Also, don't hesitate to put spaces inside your formulas, it makes reading much easier. If you have some sub-expressions that are meaningful (e.g. if (1-p)*eta*x(2,1) is the number of insects that are dying of the disease, just put it in a variable dyingInsects and use that everywhere it occurs). If you align your assignments (as I've done above), this might add to code that is easier to read and understand.
With regard to the ODE solver, if you are sure your implementation is correct, I'd also try a solver for stiff problems (unless you are absolutely sure you don't have a stiff system).

creating a train perceptron in MATLAB for gender clasiffication

I am coding a perceptron to learn to categorize gender in pictures of faces. I am very very new to MATLAB, so I need a lot of help. I have a few questions:
I am trying to code for a function:
function [y] = testset(x,w)
%y = sign(sigma(x*w-threshold))
where y is the predicted results, x is the training/testing set put in as a very large matrix, and w is weight on the equation. The part after the % is what I am trying to write, but I do not know how to write this in MATLAB code. Any ideas out there?
I am trying to code a second function:
function [err] = testerror(x,w,y)
%err = sigma(max(0,-w*x*y))
w, x, and y have the same values as stated above, and err is my function of error, which I am trying to minimize through the steps of the perceptron.
I am trying to create a step in my perceptron to lower the percent of error by using gradient descent on my original equation. Does anyone know how I can increment w using gradient descent in order to minimize the error function using an if then statement?
I can put up the code I have up till now if that would help you answer these questions.
Thank you!
edit--------------------------
OK, so I am still working on the code for this, and would like to put it up when I have something more complete. My biggest question right now is:
I have the following function:
function [y] = testset(x,w)
y = sign(sum(x*w-threshold))
Now I know that I am supposed to put a threshold in, but cannot figure out what I am supposed to put in as the threshold! any ideas out there?
edit----------------------------
this is what I have so far. Changes still need to be made to it, but I would appreciate input, especially regarding structure, and advice for making the changes that need to be made!
function [y] = Perceptron_Aviva(X,w)
y = sign(sum(X*w-1));
end
function [err] = testerror(X,w,y)
err = sum(max(0,-w*X*y));
end
%function [w] = perceptron(X,Y,w_init)
%w = w_init;
%end
%------------------------------
% input samples
X = X_train;
% output class [-1,+1];
Y = y_train;
% init weigth vector
w_init = zeros(size(X,1));
w = w_init;
%---------------------------------------------
loopcounter = 0
while abs(err) > 0.1 && loopcounter < 100
for j=1:size(X,1)
approx_y(j) = Perceptron_Aviva(X(j),w(j))
err = testerror(X(j),w(j),approx_y(j))
if err > 0 %wrong (structure is correct, test is wrong)
w(j) = w(j) - 0.1 %wrong
elseif err < 0 %wrong
w(j) = w(j) + 0.1 %wrong
end
% -----------
% if sign(w'*X(:,j)) ~= Y(j) %wrong decision?
% w = w + X(:,j) * Y(j); %then add (or subtract) this point to w
end
you can read this question I did some time ago.
I uses a matlab code and a function perceptron
function [w] = perceptron(X,Y,w_init)
w = w_init;
for iteration = 1 : 100 %<- in practice, use some stopping criterion!
for ii = 1 : size(X,2) %cycle through training set
if sign(w'*X(:,ii)) ~= Y(ii) %wrong decision?
w = w + X(:,ii) * Y(ii); %then add (or subtract) this point to w
end
end
sum(sign(w'*X)~=Y)/size(X,2) %show misclassification rate
end
and it is called from code (#Itamar Katz) like (random data):
% input samples
X1=[rand(1,100);rand(1,100);ones(1,100)]; % class '+1'
X2=[rand(1,100);1+rand(1,100);ones(1,100)]; % class '-1'
X=[X1,X2];
% output class [-1,+1];
Y=[-ones(1,100),ones(1,100)];
% init weigth vector
w=[.5 .5 .5]';
% call perceptron
wtag=perceptron(X,Y,w);
% predict
ytag=wtag'*X;
% plot prediction over origianl data
figure;hold on
plot(X1(1,:),X1(2,:),'b.')
plot(X2(1,:),X2(2,:),'r.')
plot(X(1,ytag<0),X(2,ytag<0),'bo')
plot(X(1,ytag>0),X(2,ytag>0),'ro')
legend('class -1','class +1','pred -1','pred +1')
I guess this can give you an idea to make the functions you described.
To the error compare the expected result with the real result (class)
Assume your dataset is X, the datapoins, and Y, the labels of the classes.
f=newp(X,Y)
creates a perceptron.
If you want to create an MLP then:
f=newff(X,Y,NN)
where NN is the network architecture, i.e. an array that designates the number of neurons at each hidden layer. For example
NN=[5 3 2]
will correspond to an network with 5 neurons at the first layers, 3 at the second and 2 a the third hidden layer.
Well what you call threshold is the Bias in machine learning nomenclature. This should be left as an input for the user because it is used during training.
Also, I wonder why you are not using the builtin matlab functions. i.e newp or newff. e.g.
ff=newp(X,Y)
Then you can set the properties of the object ff to do your job for selecting gradient descent and so on.