What I need to provide to make calls from my k8s cluster? - kubernetes

I have a Kubernetes Cluster with my application running inside of it, also I have a host machine, that my application need to access.
All the infrastructure is located inside the VPN network
How can I setup egress to let my application send requests from the cluster to this host machine (does the Kubernetes Network Policies is an appropriate way to handle this stuff and actually solving this problem?)
(Sorry, if this is too obvious question, haven't found any solutions for that yet, that works)

I'm not sure if I get your question right, but by default no network connectivity is blocked by Kubernetes. I assume you haven't set up any NetworkPolicies, this means all Ingress & Egress communication is open and nothing will block access, at least from K8s perspective.
However, if you have only deployed your application but haven't exposed it yet (with Ingress or Service: LoadBalancer) you will not be able to reach your application from outside the cluster. If you're running on-prem you will need to install MetalLB or some sort of service that allows you to create Services of Type LoadBalancer. The same goes for Ingress however, as the Ingress Controller will need some sort of access in the first place.

Related

Connecting to many kubernetes services from local machine

From my local machine I would like to be able to port forward to many services in a cluster.
For example I have services of name serviceA-type1, serviceA-type2, serviceA-type3... etc. None of these services are accessible externally but can be accessed using the kubectl port-forward command. However there are so many services, that port forwarding to each is unfeasible.
Is it possible to create some kind of proxy service in kubernetes that would allow me to connect to any of the serviceA-typeN services by specifying the them in a URL? I would like to be able to port-forward to the proxy service from my local machine and it would then forward the requests to the serviceA-typeN services.
So for example, if I have set up a port forward on 8080 to this proxy, then the URL to access the serviceA-type1 service might look like:
http://localhost:8080/serviceA-type1/path/to/endpoint?a=1
I could maybe create a small application that would do this but does kubernetes provide this functionality already?
kubectl proxy command provides this functionality.
Read more here: https://kubernetes.io/docs/tasks/administer-cluster/access-cluster-services/#manually-constructing-apiserver-proxy-urls
Good option is to use Ingrees to achieve it.
Read more about what Ingress is.
Main concepts are:
Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic routing is controlled by rules defined on the Ingress resource.
An Ingress may be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based virtual hosting.
An Ingress controller is responsible for fulfilling the Ingress, usually with a load balancer, though it may also configure your edge router or additional frontends to help handle the traffic.
An Ingress does not expose arbitrary ports or protocols. Exposing services other than HTTP and HTTPS to the internet typically uses a service of type Service.Type=NodePort or Service.Type=LoadBalancer.
In Kubernetes we have 4 types of Services and the default service type is Cluster IP which means the service is only reachable within the cluster.Ingress exposes your service outside the cluster so ingress acts as the entry point into your cluster.
If you plan to move to cloud (I assume you will, because all applications are going to work in cloud in future) with Ingress, it will be compatible with cloud services and eventually will save time and will be easier to migrate from local environment.
To start with ingress you need to install an Ingress controller first.
There are different ingress controllers which you can use.
You can start with most common ingress-nginx which is supported by kubernetes community.
If you're using a minikube than it can be enabled as an addon - see here
Once you have installed ingress in your cluster, you need to create a rule to have it work. Simple fanout is an example with two services and path based routing to it.

Q: Efficient Kubernetes load balancing

I've been looking into Kubernetes networking, more specifically, how to serve HTTPS users the most efficient.
I was watching this talk: https://www.youtube.com/watch?v=0Omvgd7Hg1I and from 22:18 he explains what the problem is with a load balancer that is not pod aware. Now, how they solve this in kubernetes is by letting the nodes also act as a 'router' and letting the node pass the request on to another node. (explained at 22:46). This does not seem very efficient, but when looking around SoundCloud (https://developers.soundcloud.com/blog/how-soundcloud-uses-haproxy-with-kubernetes-for-user-facing-traffic) actually seems to do something similar to this but with NodePorts. They say that the overhead costs less than creating a better load balancer.
From what I have read an option might be using an ingress controller. Making sure that there is not more than one ingress controller per node, and routing the traffic to the specific nodes that have an ingress controller. That way there will not be any traffic re-routing needed. However, this does add another layer of routing.
This information is all from 2017, so my question is: is there any pod aware load balancer out there, or is there some other method that does not involve sending the http request and response over the network twice?
Thank you in advance,
Hendrik
EDIT:
A bit more information about my use case:
There is a bare-metal setup with kubernetes. The firewall load balances the incomming data between two HAProxy instances. These HAProxy instances do ssl termination and forward the traffic to a few sites. This includes an exchange setup, a few internal IIS sites and a nginx server for a static web app. The idea is to transform the app servers into kubernetes.
Now my main problem is how to get the requests from HAProxy into kubernetes. I see a few options:
Use the SoundCloud setup. The infrastructure could stay almost the same, the HAProxy server can still operate the way they do now.
I could use an ingress controller on EACH node in the kubernetes cluster and have the firewall load balance between the nodes. I believe it is possible to forward traffic from the ingress controller to server outside the cluster, e.g. exchange.
Some magic load balancer that I do not know about that is pod aware and able to operate outside of the kubernetes cluster.
Option 1 and 2 are relatively simple and quite close in how they work, but they do come with a performance penalty. This is the case when the node that the requests gets forwarded to by the firewall does not have the required pod running, or if another pod is doing less work. The request will get forwarded to another node, thus, using the network twice.
Is this just the price you pay when using Kubernetes, or is there something that I am missing?
How traffic heads to pods depend on whether a managed cluster is used.
Almost all cloud providers can forward traffic in a cloud-native way in their managed K8s clusters. First, you can a managed cluster with some special network settings (e.g. vpc-native cluster of GKE). Then, the only thing you need to do is to create a LoadBalancer typed Service to expose your workload. You can also create Ingresses for your L7 workloads, they are going to be handled by provided IngressControllers (e.g. ALB of AWS).
In an on-premise cluster without any cloud provider(OpenStack or vSphere), the only way to expose workloads is NodePort typed Service. It doesn't mean you can't improve it.
If your cluster is behind reverse proxies (the SoundCloud case), setting externalTrafficPolicy: Local to Services could break traffic forwarding among work nodes. When traffic received through NodePorts, they are forwarded to local Pods or dropped if Pods reside on other nodes. Reserve proxy will mark these NodePort as unhealthy in the backend health check and reject to forward traffic to them. Another choice is to use topology-aware service routing. In this case, local Pods have priorities and traffic is still forwarded between node when no local Pods matched.
For IngressController in on-prem clusters, it is a little different. You may have some work nodes that have EIP or public IP. To expose HTTP(S) services, an IngressController usually deployed on those work nodes through DaemeaSet and HostNetwork such that clients access the IngressController via the well-known ports and EIP of nodes. These work nodes regularly don't accept other workloads (e.g. infra node in OpenShift) and one more forward on the Pod network is needed. You can also deploy the IngressController on all work nodes as well as other workloads, so traffic could be forwarded to a closer Pod if the IngressController supports topology-aware service routing although it can now.
Hope it helps!

Deploying a mobile app backend with kubernetes

I need to some advice regarding how to deploy a high traffic mobile app back-end using kubernetes. This deployment should support HA at-least. We have plans to run a DR site as well, but scope of this question does not include a DR.
We currently use hardware load-balancers to route incoming traffic to different IP addresses attached to different boxes. Each such box runs a nginx instance as a reverse proxy which also act as the https terminator. After https termination, traffic is directed to an apache web-server. Each box has one apacher server receiving all traffic from nginx running in the same box.
We want to introduce kubernetes to this setup so that we can utilize boxes better. Our traffic patterns are highly fluctuating and we believe kubernetes can help us utilize boxes in a more efficient manner.
My current plan is as follows:
-- Keep the hardware load balancer to route incoming traffic to different boxes. (this may not be needed but getting rid of HLB could become very political).
-- Run a kubenetes cluster utilizing all available boxes
-- pack apache + our app as docker image and deploy this image on docker container which in tern is run inside pods in the kubenetes cluster
-- setup ingress to accept external traffic, do https termination and load balance to above pods. A simple round robin or random load balancing algo is fine as our back ends are stateless
Does this sound right? Are there any alternatives? In the above case, where does the ingress controller run?
Your plan seems right. You can either pack apache with the code but it shall be better to keep it separate so that they can contact each other and any one of the version upgrades won't be dependent upon this one.
Also, the hardware load balancer will tickle the traffic on to the ingress which shall further bring it down to the k8s cluster and eventually on the pods.
The ingress controller runs inside the cluster. I guess you're looking to run kuberentes on-premise with your existing hardware. To use the existing hardware loadbalancer outside of kubernetes you could run the nginx ingress controller as a daemonset so that there'd be one instance on each node and expose it via HostPort so that each is exposed on the same port. Or if there are lots of nodes then you'd want to just use a Deployment. Then you'd would want to use NodePort so that Kuberentes would send the traffic to a node where an ingress controller pod runs.
Another alternative would be to expose the nginx ingress controller through LoadBalancer - to do that you'd need to integrate your loadbalancer with kubernetes using something like https://hackernoon.com/metallb-a-load-balancer-for-bare-metal-kubernetes-clusters-f7320fde52f2
Alternatively, you wouldn't necessarily have to use ingress. You could just run nginx in the cluster and expose it via NodePort.
It's not clear to me that you'd need apache http server in your container. I guess it depends how you are using it currently.

How to access Kubernetes pod in local cluster?

I have set up an experimental local Kubernetes cluster with one master and three slave nodes. I have created a deployment for a custom service that listens on port 10001. The goal is to access an exemplary endpoint /hello with a stable IP/hostname, e.g. http://<master>:10001/hello.
After deploying the deployment, the pods are created fine and are accessible through their cluster IPs.
I understand the solution for cloud providers is to create a load balancer service for the deployment, so that you can just expose a service. However, this is apparently not supported for a local cluster. Setting up Ingress seems overkill for this purpose. Is it not?
It seems more like kube proxy is the way to go. However, when I run kube proxy --port <port> on the master node, I can access http://<master>:<port>/api/..., but not the actual pod.
There are many related questions (e.g. How to access services through kubernetes cluster ip?), but no (accepted) answers. The Kubernetes documentation on the topic is rather sparse as well, so I am not even sure about what is the right approach conceptually.
I am hence looking for a straight-forward solution and/or a good tutorial. It seems to be a very typical use case that lacks a clear path though.
If an Ingress Controller is overkill for your scenario, you may want to try using a service of type NodePort. You can specify the port, or let the system auto-assign one for you.
A NodePort service exposes your service at the same port on all Nodes in your cluster. If you have network access to your Nodes, you can access your service at the node IP and port specified in the configuration.
Obviously, this does not load balance between nodes. You can add an external service to help you do this if you want to emulate what a real load balancer would do. One simple option is to run something like rocky-cli.
An Ingress is probably your simplest bet.
You can schedule the creation of an Nginx IngressController quite simply; here's a guide for that. Note that this setup uses a DaemonSet, so there is an IngressController on each node. It also uses the hostPort config option, so the IngressController will listen on the node's IP, instead of a virtual service IP that will not be stable.
Now you just need to get your HTTP traffic to any one of your nodes. You'll probably want to define an external DNS entry for each Service, each pointing to the IPs of your nodes (i.e. multiple A/AAAA records). The ingress will disambiguate and route inside the cluster based on the HTTP hostname, using name-based virtual hosting.
If you need to expose non-HTTP services, this gets a bit more involved, but you can look in the nginx ingress docs for more examples (e.g. UDP).

Deterministic connection to cloud-internal IP of K8S service or its underlying endpoint?

I have a Kubernetes cluster (1.3.2) in the the GKE and I'd like to connect VMs and services from my google project which shares the same network as the cluster.
Is there a way for a VM that's internal to the subnet but not internal to the cluster itself to connect to the service without hitting the external IP?
I know there's a ton of things you can do to unambiguously determine the IP and port of services, such as the ENVs and DNS...but the clusterIP is not reachable outside of the cluster (obviously).
Is there something I'm missing? An important component to this is that this is meant to be a service "public" to the project, such that I don't know which VMs on the project will want to connect to the service (this could rule out loadBalancerSourceRanges). I understand the endpoint which the services actually wraps is the internal IP I can hit, but the only good way to get to that IP is though the Kube API or kubectl, both of which are not prod-ideal ways of hitting my service.
Check out my more thorough answer here, but the most common solution to this is to create bastion routes in your GCP project.
In the simplest form, you can create a single GCE Route to direct all traffic w/ dest_ip in your cluster's service IP range to land on one of your GKE nodes. If that SPOF scares you, you can create several routes pointing to different nodes, and traffic will round-robin between them.
If that management overhead isn't something you want to do going forward, you could write a simple controller in your GKE cluster to watch the Nodes API endpoint, and make sure that you have a live bastion route to at least N nodes at any given time.
GCP internal load balancing was just released as alpha, so in the future, kube-proxy on GCP could be implemented using that, which would eliminate the need for bastion routes to handle internal services.