matlab fvtool too many ouput parameters - matlab

%create a band pass filter
Fs = 200;
N=6
Fpass1 = 1;
Fpass2 = 3;
Apass = 1;
h = fdesign.bandpass('N,Fp1,Fp2,Ap', N, Fpass1, Fpass2, Apass, Fs);
Hd = design(h, 'cheby1');
fvtool(Hd)
after I execute fvool(Hd),error appears,saying that fvtool too many output parameters

Related

How to correct grid search?

Trying to find the optimal hyperparameters for my svm model using a grid search, but it simply returns 1 for the hyperparameters.
function evaluations = inner_kfold_trainer(C,q,k,features_xy,labels)
features_xy_flds = kdivide(features_xy, k);
labels_flds = kdivide(labels, k);
evaluations = zeros(k,3);
for i = 1:k
fprintf('Fold %i of %i\n',i,k);
train_data = cell2mat(features_xy_flds(1:end ~= i));
train_labels = cell2mat(labels_flds(1:end ~= i));
test_data = cell2mat(features_xy_flds(i));
test_labels = cell2mat(labels_flds(i));
%AU1
train_labels = train_labels(:,1);
test_labels = test_labels(:,1);
[k,~] = size(test_labels);
%train
sv = fitcsvm(train_data,train_labels, 'KernelFunction','polynomial', 'PolynomialOrder',q,'BoxConstraint',C);
sv.predict(test_data);
%Calculate evaluative measures
%svm_outputs = zeros(k,1);
sv_predictions = sv.predict(test_data);
[precision,recall,F1] = evaluation(sv_predictions,test_labels);
evaluations(i,1) = precision;
evaluations(i,2) = recall;
evaluations(i,3) = F1;
end
save('eval.mat', 'evaluations');
end
an inner-fold cross validation function
and below the grid function where something seems to be going wrong
function [q,C] = grid_search(features_xy,labels,k)
% n x n grid
n = 3;
q_grid = linspace(1,19,n);
C_grid = linspace(1,59,n);
tic
evals = zeros(n,n,3);
for i = 1:n
for j = 1:n
fprintf('## i=%i, j=%i ##\n', i, j);
svm_results = inner_kfold_trainer(C_grid(i), q_grid(j),k,features_xy,labels);
evals(i,j,:) = mean(svm_results(:,:));
% precision only
%evals(i,j,:) = max(svm_results(:,1));
toc
end
end
f = evals;
% retrieving the best value of the hyper parameters, to use in the outer
% fold
[M1,I1] = max(f);
[~,I2] = max(M1(1,1,:));
index = I1(:,:,I2);
C = C_grid(index(1))
q = q_grid(index(2))
end
When I run grid_search(features_xy,labels,8) for example, I get C=1 and q=1, for any k(the no. of folds) value. Also features_xy is a 500*98 matrix.

How can I measure length of signal in simulink?

I have model with "matlab function block" in which I have recursive least square method. Recursive algorithm needs to know length of incoming signal in order to work correctly. But when I use command N=length(y) it returns me length N= 1. But I think it should give me higher length.
Simulink model
Matlab function block code "rls_iden6"
function [P,N] = fcn(u,y)
%%
N = length(y);
sigma=1;
C = sigma*eye(2); %p
P = ones(2,1);
z= [y; u];
lamda=1;
for n=1:N
sample_out = y(n);
C = (C - ( (C*z*z'*C)/( lamda+(z'*C*z) ) ))/lamda;
P = P + (C*z* (sample_out - (z'*P)));
end
My final code should look like it's shown below, because it works in matlab workspace. Simulink should give me 5 parameters instead of just 2.
load data_cela.mat
u=U; %input
y=Y; %output
%%
input = 3;
output = 2;
system = input + output;
N = length(y);
%initial conditions
sigma = 1;
C = sigma*eye(system);
P = ones(system,1);
lamda = 1; %forgetting factor
for n=3:N
for i=1:2
W(i) = y(n-i); %output
end
for i=1:3
V(i) = u(n-i+1); %input
end
z = [V';W'];
sample_out = y(n);
pom(n)= z' * P;
error(n) = y(n) - pom(n);
C = (C - ( (C*z*z'*C)/( lamda+(z'*C*z) ) ))/lamda;
P = P + (C*z* (sample_out - (z'*P) ) );
change(1:system,n) = P;
end
f_param = [P(1:3);-P(4:5)];
num = [P(1:3,1)];
den = [1;-P(4:5,1)];
num1 = num(3,1);
trasferfunction = tf(num1,den',1)
Result:
0.002879
----------------------
z^2 - 1.883 z + 0.8873
You will need to add a buffer before signal to convert the scalar to matrix. Then after the buffer has been added set the buffer size to the amount of data you want, i.e. by setting it to 2 will make 2 rows and 1 column. This will help you to get the data however, for setting delay properly you will require to set buffer overlap to 1.
Hope this helps.

My approximate entropy script for MATLAB isn't working

This is my Approximate entropy Calculator in MATLAB. https://en.wikipedia.org/wiki/Approximate_entropy
I'm not sure why it isn't working. It's returning a negative value.Can anyone help me with this? R1 being the data.
FindSize = size(R1);
N = FindSize(1);
% N = input ('insert number of data values');
%if you want to put your own N in, take away the % from the line above
and
%insert the % before the N = FindSize(1)
%m = input ('insert m: integer representing length of data, embedding
dimension ');
m = 2;
%r = input ('insert r: positive real number for filtering, threshold
');
r = 0.2*std(R1);
for x1= R1(1:N-m+1,1)
D1 = pdist2(x1,x1);
C11 = (D1 <= r)/(N-m+1);
c1 = C11(1);
end
for i1 = 1:N-m+1
s1 = sum(log(c1));
end
phi1 = (s1/(N-m+1));
for x2= R1(1:N-m+2,1)
D2 = pdist2(x2,x2);
C21 = (D2 <= r)/(N-m+2);
c2 = C21(1);
end
for i2 = 1:N-m+2
s2 = sum(log(c2));
end
phi2 = (s2/(N-m+2));
Ap = phi1 - phi2;
Apen = Ap(1)
Following the documentation provided by the Wikipedia article, I developed this small function that calculates the approximate entropy:
function res = approximate_entropy(U,m,r)
N = numel(U);
res = zeros(1,2);
for i = [1 2]
off = m + i - 1;
off_N = N - off;
off_N1 = off_N + 1;
x = zeros(off_N1,off);
for j = 1:off
x(:,j) = U(j:off_N+j);
end
C = zeros(off_N1,1);
for j = 1:off_N1
dist = abs(x - repmat(x(j,:),off_N1,1));
C(j) = sum(~any((dist > r),2)) / off_N1;
end
res(i) = sum(log(C)) / off_N1;
end
res = res(1) - res(2);
end
I first tried to replicate the computation shown the article, and the result I obtain matches the result shown in the example:
U = repmat([85 80 89],1,17);
approximate_entropy(U,2,3)
ans =
-1.09965411068114e-05
Then I created another example that shows a case in which approximate entropy produces a meaningful result (the entropy of the first sample is always less than the entropy of the second one):
% starting variables...
s1 = repmat([10 20],1,10);
s1_m = mean(s1);
s1_s = std(s1);
s2_m = 0;
s2_s = 0;
% datasample will not always return a perfect M and S match
% so let's repeat this until equality is achieved...
while ((s1_m ~= s2_m) && (s1_s ~= s2_s))
s2 = datasample([10 20],20,'Replace',true,'Weights',[0.5 0.5]);
s2_m = mean(s2);
s2_s = std(s2);
end
m = 2;
r = 3;
ae1 = approximate_entropy(s1,m,r)
ae2 = approximate_entropy(s2,m,r)
ae1 =
0.00138568170752751
ae2 =
0.680090884817465
Finally, I tried with your sample data:
fid = fopen('O1.txt','r');
U = cell2mat(textscan(fid,'%f'));
fclose(fid);
m = 2;
r = 0.2 * std(U);
approximate_entropy(U,m,r)
ans =
1.08567461184858

How can I perfectly train/fit a neural network to a few random inputs in Matlab?

I want to perfectly fit a neural network (in Matlab) to some random input but I always get stuck in local optima. It should just fit the sample input perfectly, no need for generalization, that's why I disabled the data division (train vs. test data).
Here is my code:
y = [];
a = 1;
b = 100;
y = round((b-a).*rand(10,1) + a);
y = y';
x = [];
for i = 1:5
a = 500;
b = 1000000;
x(:,i) = round((b-a).*rand(10,1) + a);
end
x = x';
net = feedforwardnet(100,'trainbr');
net.numLayers = 10;
net.trainParam.epochs = 1000;
net.divideFcn = 'dividetrain';
net = train(net,x,y);
Thanks for your help!

How to use Neural network for non binary input and output

I tried to use the modified version of NN back propagation code by Phil Brierley
(www.philbrierley.com). When i try to solve the XOR problem it works perfectly. but when i try to solve a problem of the form output = x1^2 + x2^2 (ouput = sum of squares of input), the results are not accurate. i have scaled the input and ouput between -1 and 1. I get different results every time i run the same program (i understand its due to random wts initialization), but results are very different. i tried changing learning rate but still results converge.
have given the code below
%---------------------------------------------------------
% MATLAB neural network backprop code
% by Phil Brierley
%--------------------------------------------------------
clear; clc; close all;
%user specified values
hidden_neurons = 4;
epochs = 20000;
input = [];
for i =-10:2.5:10
for j = -10:2.5:10
input = [input;i j];
end
end
output = (input(:,1).^2 + input(:,2).^2);
output1 = output;
% Maximum input and output limit and scaling factors
m1 = -10; m2 = 10;
m3 = 0; m4 = 250;
c = -1; d = 1;
%Scale input and output
for i =1:size(input,2)
I = input(:,i);
scaledI = ((d-c)*(I-m1) ./ (m2-m1)) + c;
input(:,i) = scaledI;
end
for i =1:size(output,2)
I = output(:,i);
scaledI = ((d-c)*(I-m3) ./ (m4-m3)) + c;
output(:,i) = scaledI;
end
train_inp = input;
train_out = output;
%read how many patterns and add bias
patterns = size(train_inp,1);
train_inp = [train_inp ones(patterns,1)];
%read how many inputs and initialize learning rate
inputs = size(train_inp,2);
hlr = 0.1;
%set initial random weights
weight_input_hidden = (randn(inputs,hidden_neurons) - 0.5)/10;
weight_hidden_output = (randn(1,hidden_neurons) - 0.5)/10;
%Training
err = zeros(1,epochs);
for iter = 1:epochs
alr = hlr;
blr = alr / 10;
%loop through the patterns, selecting randomly
for j = 1:patterns
%select a random pattern
patnum = round((rand * patterns) + 0.5);
if patnum > patterns
patnum = patterns;
elseif patnum < 1
patnum = 1;
end
%set the current pattern
this_pat = train_inp(patnum,:);
act = train_out(patnum,1);
%calculate the current error for this pattern
hval = (tanh(this_pat*weight_input_hidden))';
pred = hval'*weight_hidden_output';
error = pred - act;
% adjust weight hidden - output
delta_HO = error.*blr .*hval;
weight_hidden_output = weight_hidden_output - delta_HO';
% adjust the weights input - hidden
delta_IH= alr.*error.*weight_hidden_output'.*(1-(hval.^2))*this_pat;
weight_input_hidden = weight_input_hidden - delta_IH';
end
% -- another epoch finished
%compute overall network error at end of each epoch
pred = weight_hidden_output*tanh(train_inp*weight_input_hidden)';
error = pred' - train_out;
err(iter) = ((sum(error.^2))^0.5);
%stop if error is small
if err(iter) < 0.001
fprintf('converged at epoch: %d\n',iter);
break
end
end
%Output after training
pred = weight_hidden_output*tanh(train_inp*weight_input_hidden)';
Y = m3 + (m4-m3)*(pred-c)./(d-c);
% Testing for a new set of input
input_test = [6 -3.1; 0.5 1; -2 3; 3 -2; -4 5; 0.5 4; 6 1.5];
output_test = (input_test(:,1).^2 + input_test(:,2).^2);
input1 = input_test;
%Scale input
for i =1:size(input1,2)
I = input1(:,i);
scaledI = ((d-c)*(I-m1) ./ (m2-m1)) + c;
input1(:,i) = scaledI;
end
%Predict output
train_inp1 = input1;
patterns = size(train_inp1,1);
bias = ones(patterns,1);
train_inp1 = [train_inp1 bias];
pred1 = weight_hidden_output*tanh(train_inp1*weight_input_hidden)';
%Rescale
Y1 = m3 + (m4-m3)*(pred1-c)./(d-c);
analy_numer = [output_test Y1']
plot(err)
This is the sample output i get for problem
state after 20000 epochs
analy_numer =
45.6100 46.3174
1.2500 -2.9457
13.0000 11.9958
13.0000 9.7097
41.0000 44.9447
16.2500 17.1100
38.2500 43.9815
if i run once more i get different results. as can be observed for small values of input i get totally wrong ans (negative ans not possible). for other values accuracy is still poor.
can someone tell what i am doing wrong and how to correct.
thanks
raman