I am planning to do multirobot load carrying simulations which would like this
where the two circles are robots and the rectangle is a load
I have found an excellent library that has a very simple holonomic point robot simulation https://github.com/maxspahn/gym_envs_urdf in which I have two robots loaded which have a urdf associated to them and are loaded into the environment.
To this simulation, I'm looking for ways in which I can add a load like the one shown in the figure.1, the load is attached to a fixed continuous joint which allows the robot to rotate in place with the load on the top.
To accomplish this would the urdf files have to modified or can this be done directly through the pybullet python API. Any help is deeply appreciated. Thank you.
code for the simulation, to run this, the library has to installed.
import gym
import numpy as np
from urdfenvs.robots.tiago import TiagoRobot
from urdfenvs.robots.generic_urdf import GenericUrdfReacher
from urdfenvs.robots.prius import Prius
# import sys
# sys.path.append("/home/josyula/Programs/MAS_Project/gym_envs_urdf/")
import pybullet
def run_multi_robot(n_steps=1000, render=False, obstacles=False, goal=False):
robots = [
GenericUrdfReacher(urdf="pointRobot.urdf", mode="vel"),
GenericUrdfReacher(urdf="pointRobot.urdf", mode="vel"),
# GenericUrdfReacher(urdf="ur5.urdf", mode="acc"),
# GenericUrdfReacher(urdf="ur5.urdf", mode="acc"),
# TiagoRobot(mode="vel"),
# Prius(mode="vel")
]
env = gym.make(
"urdf-env-v0",
dt=0.01, robots=robots, render=render
)
n = env.n()
action = np.ones(n) * -0.2
pos0 = np.zeros(n)
pos0[1] = -0.0
base_pos = np.array([
[0.0, 1.0, 0.0],
[0.0, -1.0, 0.0],
[0.0, -2.0, 0.0]
])
ob = env.reset(pos=pos0, base_pos=base_pos)
print(f"Initial observation : {ob}")
if goal:
from examples.scene_objects.goal import dynamicGoal
env.add_goal(dynamicGoal)
# if obstacles:
# from examples.scene_objects.obstacles import dynamicSphereObst2
# env.add_obstacle(dynamicSphereObst2)
pybullet.createVisualShape(pybullet.GEOM_BOX, halfExtents=[0.5, 0.5, 0.5])
print("Starting episode")
history = []
for _ in range(n_steps):
ob, _, _, _ = env.step(action)
history.append(ob)
env.close()
return history
#add load onto robots
if __name__ == "__main__":
run_multi_robot(render=True, obstacles=True, goal=True)
Related
I want to use object detection using tensorflow lite in order to detect a clear face or a covered face where the statement "door opens" is printed when a clear face is detected. I could run this code smoothly previously but later after rebooting raspberry pi 4, although the tensorflow lite runtime is initialized, the raspberry pi 4 disconnects with the ssh completely. The following is the code:
######## Webcam Object Detection Using Tensorflow-trained Classifier #########
#
# Author: Evan Juras
# Date: 10/27/19
# Description:
# This program uses a TensorFlow Lite model to perform object detection on a live webcam
# feed. It draws boxes and scores around the objects of interest in each frame from the
# webcam. To improve FPS, the webcam object runs in a separate thread from the main program.
# This script will work with either a Picamera or regular USB webcam.
#
# This code is based off the TensorFlow Lite image classification example at:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
#
# I added my own method of drawing boxes and labels using OpenCV.
# Import packages
import os
import argparse
import cv2
import numpy as np
import sys
import time
from threading import Thread
import importlib.util
import simpleaudio as sa
# Define VideoStream class to handle streaming of video from webcam in separate processing thread
# Source - Adrian Rosebrock, PyImageSearch: https://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/
class VideoStream:
"""Camera object that controls video streaming from the Picamera"""
def __init__(self,resolution=(640,480),framerate=30):
# Initialize the PiCamera and the camera image stream
self.stream = cv2.VideoCapture(0)
ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
ret = self.stream.set(3,resolution[0])
ret = self.stream.set(4,resolution[1])
# Read first frame from the stream
(self.grabbed, self.frame) = self.stream.read()
# Variable to control when the camera is stopped
self.stopped = False
def start(self):
# Start the thread that reads frames from the video stream
Thread(target=self.update,args=()).start()
return self
def update(self):
# Keep looping indefinitely until the thread is stopped
while True:
# If the camera is stopped, stop the thread
if self.stopped:
# Close camera resources
self.stream.release()
return
# Otherwise, grab the next frame from the stream
(self.grabbed, self.frame) = self.stream.read()
def read(self):
# Return the most recent frame
return self.frame
def stop(self):
# Indicate that the camera and thread should be stopped
self.stopped = True
# Define and parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
required=True)
parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
default='masktracker.tflite')
parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
default='facelabelmap.txt')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
default=0.5)
parser.add_argument('--resolution', help='Desired webcam resolution in WxH. If the webcam does not support the resolution entered, errors may occur.',
default='640x480')
parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
action='store_true')
args = parser.parse_args()
MODEL_NAME = args.modeldir
GRAPH_NAME = args.graph
LABELMAP_NAME = args.labels
min_conf_threshold = float(args.threshold)
resW, resH = args.resolution.split('x')
imW, imH = int(resW), int(resH)
use_TPU = args.edgetpu
# Import TensorFlow libraries
# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
# If using Coral Edge TPU, import the load_delegate library
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
from tflite_runtime.interpreter import Interpreter
if use_TPU:
from tflite_runtime.interpreter import load_delegate
else:
from tensorflow.lite.python.interpreter import Interpreter
if use_TPU:
from tensorflow.lite.python.interpreter import load_delegate
# If using Edge TPU, assign filename for Edge TPU model
if use_TPU:
# If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
if (GRAPH_NAME == 'masktracker.tflite'):
GRAPH_NAME = 'edgetpu.tflite'
# Get path to current working directory
CWD_PATH = os.getcwd()
# Path to .tflite file, which contains the model that is used for object detection
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
# Load the label map
with open(PATH_TO_LABELS, 'r') as f:
labels = [line.strip() for line in f.readlines()]
# Have to do a weird fix for label map if using the COCO "starter model" from
# https://www.tensorflow.org/lite/models/object_detection/overview
# First label is '???', which has to be removed.
if labels[0] == '???':
del(labels[0])
# Load the Tensorflow Lite model.
# If using Edge TPU, use special load_delegate argument
if use_TPU:
interpreter = Interpreter(model_path=PATH_TO_CKPT,
experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
print(PATH_TO_CKPT)
else:
interpreter = Interpreter(model_path=PATH_TO_CKPT)
interpreter.allocate_tensors()
# Get model details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
input_mean = 127.5
input_std = 127.5
# Initialize frame rate calculation
frame_rate_calc = 1
freq = cv2.getTickFrequency()
global image_capture
image_capture = 0
# Initialize video stream
videostream = VideoStream(resolution=(imW,imH),framerate=30).start()
time.sleep(1)
#for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
while True:
# Start timer (for calculating frame rate)
t1 = cv2.getTickCount()
# Grab frame from video stream
frame1 = videostream.read()
# Acquire frame and resize to expected shape [1xHxWx3]
frame = frame1.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height))
input_data = np.expand_dims(frame_resized, axis=0)
# Normalize pixel values if using a floating model (i.e. if model is non-quantized)
if floating_model:
input_data = (np.float32(input_data) - input_mean) / input_std
# Perform the actual detection by running the model with the image as input
interpreter.set_tensor(input_details[0]['index'],input_data)
interpreter.invoke()
# Retrieve detection results
boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects
classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects
scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects
#num = interpreter.get_tensor(output_details[3]['index'])[0] # Total number of detected objects (inaccurate and not needed)
# Loop over all detections and draw detection box if confidence is above minimum threshold
for i in range(len(scores)):
if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
# Get bounding box coordinates and draw box
# Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
ymin = int(max(1,(boxes[i][0] * imH)))
xmin = int(max(1,(boxes[i][1] * imW)))
ymax = int(min(imH,(boxes[i][2] * imH)))
xmax = int(min(imW,(boxes[i][3] * imW)))
# Draw label
object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
if (object_name=="face unclear" ):
color = (0, 255, 0)
cv2.rectangle(frame, (xmin,ymin), (xmax,ymax),color, 2)
print("Face Covered: Door Not Opened")
if(image_capture == 0):
path = r'/home/pi/Desktop/tflite_1/photographs'
date_string = time.strftime("%Y-%m-%d_%H%M%S")
#print(date_string)
cv2.imwrite(os.path.join(path, (date_string + ".jpg")),frame)
#cv2.imshow("Photograph",frame)
#mp3File = input(alert_audio.mp3)
print("Photo Taken")
#w_object = sa.WaveObject.from_wave_file('alert_audio.wav')
#p_object = w_object.play()
#p_object.wait_done()
image_capture = 1
else:
color = (0, 0, 255)
cv2.rectangle(frame, (xmin,ymin), (xmax,ymax),color, 2)
print("Face Clear: Door Opened")
image_capture = 0
#cv2.rectangle(frame, (xmin,ymin), (xmax,ymax),color, 2)
#image = np.asarray(ImageGrab.grab())
label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
if ((scores[0] < min_conf_threshold)):
cv2.putText(frame,"No Face Detected",(260,260),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color=(255,0,0))
print("No Face Detected")
image_capture = 0
# Draw framerate in corner of frame
cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)
# All the results have been drawn on the frame, so it's time to display it.
cv2.imshow('Object detector', frame)
# Calculate framerate
t2 = cv2.getTickCount()
time1 = (t2-t1)/freq
frame_rate_calc= 1/time1
# Press 'q' to quit
if cv2.waitKey(1) == ord('q'):
break
# Clean up
cv2.destroyAllWindows()
videostream.stop()
Any help is appreciated.
Regards,
MD
This code is specified to visualize the CALIPSO satellite atmospheric profiles
The input files are .HDF
The code is copyrighted to the HDF group.
In the begining, I struggled with installing the basemap,
finally I installed it using .whl file on my windows10.
Now, this error is reached when I run the script:
SystemError:
execution of module _geoslib raised unreported exception.
I have looked a lot in google, but nothing done.
Can you please help me?
Cheers
"Copyright (C) 2014-2019 The HDF Group
Copyright (C) 2014 John Evans
This example code illustrates how to access and visualize a LaRC CALIPSO file
in file in Python.
If you have any questions, suggestions, or comments on this example, please use
the HDF-EOS Forum (http://hdfeos.org/forums). If you would like to see an
example of any other NASA HDF/HDF-EOS data product that is not listed in the
HDF-EOS Comprehensive Examples page (http://hdfeos.org/zoo), feel free to
contact us at eoshelp#hdfgroup.org or post it at the HDF-EOS Forum
(http://hdfeos.org/forums).
Usage: save this script and run
$python CAL_LID_L2_VFM-ValStage1-V3-02.2011-12-31T23-18-11ZD.hdf.py
The HDF file must either be in your current working directory
or in a directory specified by the environment variable HDFEOS_ZOO_DIR.
Tested under: Python 2.7.15::Anaconda custom (64-bit)
Last updated: 2019-01-25
"""
import os
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.basemap import Basemap
from matplotlib import colors
USE_NETCDF4 = False
def run(FILE_NAME):
# Identify the data field.
DATAFIELD_NAME = 'Feature_Classification_Flags'
if USE_NETCDF4:
from netCDF4 import Dataset
nc = Dataset(FILE_NAME)
# Subset the data to match the size of the swath geolocation fields.
# Turn off autoscaling, we'll handle that ourselves due to presence of
# a valid range.
var = nc.variables[DATAFIELD_NAME]
data = var[:,1256]
# Read geolocation datasets.
lat = nc.variables['Latitude'][:]
lon = nc.variables['Longitude'][:]
else:
from pyhdf.SD import SD, SDC
hdf = SD(FILE_NAME, SDC.READ)
# Read dataset.
data2D = hdf.select(DATAFIELD_NAME)
data = data2D[:,1256]
# Read geolocation datasets.
latitude = hdf.select('Latitude')
lat = latitude[:]
longitude = hdf.select('Longitude')
lon = longitude[:]
# Subset data. Otherwise, all points look black.
lat = lat[::10]
lon = lon[::10]
data = data[::10]
# Extract Feature Type only through bitmask.
data = data & 7
# Make a color map of fixed colors.
cmap = colors.ListedColormap(['black', 'blue', 'yellow', 'green', 'red', 'purple', 'gray', 'white'])
# The data is global, so render in a global projection.
m = Basemap(projection='cyl', resolution='l',
llcrnrlat=-90, urcrnrlat=90,
llcrnrlon=-180, urcrnrlon=180)
m.drawcoastlines(linewidth=0.5)
m.drawparallels(np.arange(-90.,90,45))
m.drawmeridians(np.arange(-180.,180,45), labels=[True,False,False,True])
x,y = m(lon, lat)
i = 0
for feature in data:
m.plot(x[i], y[i], 'o', color=cmap(feature), markersize=3)
i = i+1
long_name = 'Feature Type at Altitude = 2500m'
basename = os.path.basename(FILE_NAME)
plt.title('{0}\n{1}'.format(basename, long_name))
fig = plt.gcf()
# define the bins and normalize
bounds = np.linspace(0,8,9)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
# create a second axes for the colorbar
ax2 = fig.add_axes([0.93, 0.2, 0.01, 0.6])
cb = mpl.colorbar.ColorbarBase(ax2, cmap=cmap, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds, format='%1i')
cb.ax.set_yticklabels(['invalid', 'clear', 'cloud', 'aerosol', 'strato', 'surface', 'subsurf', 'no signal'], fontsize=5)
# plt.show()
pngfile = "{0}.py.png".format(basename)
fig.savefig(pngfile)
if __name__ == "__main__":
# If a certain environment variable is set, look there for the input
# file, otherwise look in the current directory.
hdffile = 'CAL_LID_L2_VFM-ValStage1-V3-02.2011-12-31T23-18-11ZD.hdf'
try:
fname = os.path.join(os.environ['HDFEOS_ZOO_DIR'], ncfile)
except KeyError:
fname = hdffile
run(fname)
Please try miniconda and use basemap from conda-forge:
conda install -c conda-forge basemap
Using TensorFlow I am trying to detect one object(png and grayscale image). I have trained and exported a model.ckpt successfully. Now I am trying to restore the saved model.ckpt for prediction. Here is the script:
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
if tf.__version__ != '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.0!')
# This is needed to display the images.
#matplotlib inline
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils as vis_util
MODEL_NAME = 'melon_graph'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('training', 'object_detection.pbtxt')
NUM_CLASSES = 1
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 1)).astype(np.float64)
# For the sake of simplicity we will use only 2 images:
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'te_data{}.png'.format(i)) for i in range(1, 336) ]
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.float64), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=5)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
and this is the error
Traceback (most recent call last): File "cochlear_detection.py",
line 81, in
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded}) File
"/anaconda/lib/python3.6/site-packages/tensorflow/python/client/session.py",
line 889, in run
run_metadata_ptr) File "/anaconda/lib/python3.6/site-packages/tensorflow/python/client/session.py",
line 1096, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape()))) ValueError: Cannot feed value of shape (1, 2048, 2048, 1) for Tensor
'image_tensor:0', which has shape '(?, ?, ?, 3)'
I am doing a project about brain tumor segmentation. And when I apply N4BiasCorrection to my file(.mha), I used slicer and simpleITK methods.
Slicer performs well but is time-consuming because I do not know how to use code to run through all my file, I just use the Slicer-N4ITK module and process each file by hand.
Then I try the simpleITK with python, problems show up. First, it runs very slow on each .mha file and gets a really big file(36.7MB compare with 4.4MB using Slicer) after applying n4biasfieldcorrection. Second, in order to speed up, I set the Shrink parameter to 4 but the whole .mha file becomes really blurred, which will not happen using slicer.
So can anyone tell me whether it is normal ? are there any methods to speed up without blurring my file? Or could you please tell me an example to apply N4BiasFieldCorrection within Slicer python interactor .
Thanks!!
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
from __future__ import print_function
import SimpleITK as sitk
import sys
import os
#from skimage import io
from glob import glob
import numpy as np
def n4process(inputimage, outpath):
inputImage = sitk.ReadImage( inputimage )
# numberFilltingLevels = 4
maskImage = sitk.OtsuThreshold( inputImage, 0, 1, 200 )
# inputImage = sitk.Shrink( inputImage, [ 2 ] * inputImage.GetDimension() )
# maskImage = sitk.Shrink( maskImage, [ 2 ] * inputImage.GetDimension() )
inputImage = sitk.Cast( inputImage, sitk.sitkFloat32 )
corrector = sitk.N4BiasFieldCorrectionImageFilter();
corrector.SetConvergenceThreshold=0.001
corrector.SetBiasFieldFullWidthAtHalfMaximum=0.15
corrector.SetMaximumNumberOfIterations=50
corrector.SetNumberOfControlPoints=4
corrector.SetNumberOfHistogramBins=200
corrector.SetSplineOrder=3
corrector.SetWienerFilterNoise=0.1
output = corrector.Execute( inputImage,maskImage )
sitk.WriteImage( output, outpath )
input_path = '/Users/chenrui/Desktop/BRATS2015_Training/HGG/'
patientpath = glob('/Users/chenrui/Desktop/BRATS2015_Training/HGG/*')
num = 0
for i in patientpath:
num = num+1
#i = '/Users/chenrui/Desktop/BRATS2015_Training/HGG/brats_2013_pat0001_1'
flair = glob(i + '/*Flair*/*.mha')
flair_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/test/'+'Flair/'+str(num)+'.mha'
n4process(flair[0], flair_outpath)
t2 = glob(i + '/*T2*/*.mha')
t2_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/HGG_n4/'+'T2/'+str(num)+'.mha'
n4process(t2[0], t2_outpath)
t1c = glob(i + '/*_T1c*/*.mha')
t1c_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/HGG_n4/'+'T1c/'+str(num)+'.mha'
n4process(t1c[0], t1c_outpath)
t1 = glob(i + '/*_T1*/*.mha')
t1 = [scan for scan in t1 if scan not in t1c]
t1_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/HGG_n4/'+'T1/'+str(num)+'.mha'
n4process(t1[0],t1_outpath)
From a look at the original implementation http://www.insight-journal.org/browse/publication/640
You can download this and generate the example to then test on your data. The parameters you set appear to be the same as defined in the defaults except for WeinerFilterNoise which should be 0.01 unless you've changed this for a reason - is this the blurring issue?
The size differential (x 8 increase) will be that you've probably saved out the data from 8bit to 64 bit or something. Checking the metaimage header will show this. This can be resolved with casting.
I would like to use the chaco tools ScatterInspector and/or ScatterInspectorOverlay with enaml. I've set up a very simple controller and view (source below) but cannot determine how to proceed. I have tried unsuccessfully to follow the minimal and old examples I've found.
If I uncomment the overlay part for ScatterInspectorOverlay, the code fails to run with
File ".../chaco/scatter_inspector_overlay.py", line 51, in overlay if not plot or not plot.index or not getattr(plot, "value", True):
If I comment out the overlay part, I of course don't get the overlay behavior I want and also, on moving the mouse, get
File ".../chaco/tools/scatter_inspector.py", line 48, in normal_mouse_move index = plot.map_index((event.x, event.y), threshold=self.threshold)
view.enaml source:
from enaml.widgets.api import (
Window, Container, EnableCanvas,
)
enamldef ScatterView(Window):
attr controller
title = "Scatter Inspector Test"
initial_size = (640,480)
Container:
EnableCanvas:
component = controller.scatter_plot
controller.py source:
import enaml
from enaml.stdlib.sessions import show_simple_view
from traits.api import HasTraits, Instance
from chaco.api import Plot, ArrayPlotData, ScatterInspectorOverlay
from chaco.tools.api import ScatterInspector
from numpy import linspace, sin
class ScatterController(HasTraits):
scatter_plot = Instance(Plot)
def _scatter_plot_default(self):
# data
x = linspace(-14, 14, 100)
y = sin(x) * x**3
plotdata = ArrayPlotData(x = x, y = y)
# plot
scatter_plot = Plot(plotdata)
renderer = scatter_plot.plot(("x", "y"), type="scatter", color="red")
# inspector
scatter_plot.tools.append(ScatterInspector(scatter_plot))
# overlay
# scatter_plot.overlays.append( ScatterInspectorOverlay(
# scatter_plot,
# hover_color = 'red',
# hover_marker_size = 6,
# selection_marker_size = 6,
# selection_color = 'yellow',
# selection_outline_color='purple',
# selection_line_width = 3
# ))
#return
return scatter_plot
if __name__ == "__main__":
with enaml.imports():
from view import ScatterView
main_controller = ScatterController()
window = ScatterView(controller=ScatterController())
show_simple_view(window)
The problem with my above code was that I was adding ScatterInspector to scatter_plot rather than to renderer and that I was missing the [0] index to get renderer.
The key thing I was really wanting to do, though, was to be notified when the mouse was hovering over a data point and/or a data point was selected. I added when_hover_or_selection_changes which shows how to do that.
Working controller.py:
...
# plot
scatter_plot = Plot(plotdata)
renderer = scatter_plot.plot(("x", "y"), type="scatter", color="lightblue")[0]
# inspector
renderer.tools.append(ScatterInspector(renderer))
# overlay
renderer.overlays.append(ScatterInspectorOverlay(renderer,
hover_color="red",
hover_marker_size=6,
selection_marker_size=6,
selection_color="yellow",
selection_outline_color="purple",
selection_line_width=3))
...
# get notified when hover or selection changes
#on_trait_change('renderer.index.metadata')
def when_hover_or_selection_changes(self):
print 'renderer.index.metadata = ', self.renderer.index.metadata