Vectorize a sum without for loop - matlab

Suppose I have some application f takes as an argument a 2D vector v=[x;y] and returns an n-dimensional vector f(v).
Now I want to implement some application g that takes as an argument a matrix X that has m 2D-dimensional columns for example X = [ 1 2 3 ; 4 5 6 ] and that sums the image by f of each column. I did a non-vectorized version with a for loop but I cannot see how to avoid such a loop since I feel we must treat each column one by one
[~,size]=size(X);
img=zeros(n,1);
for i=1:size
col=X(:,i);
img = img + f(col);
end
Any ideas to vectorize this ?

For an images this is a 2D-matrix, you can convert it to a vector without using a loop:
ImgVector = Img(:);
f=v(:);
Or:
ImgVector = reshape(Img, 1, []);
f=reshape(v,1,[]);

Related

Index a vector by a matrix of conditions to obtain multiple selections of the target?

I have a vector T of length n and m other vectors of the same length with 0 or 1 used as condition to select elements of T. The condition vectors are combined into a matrix I of size n x m.
Is there a one liner to extract a matrix M of values from Tsuch that the i-th column of M are those elements in T that are selected by the condition elements of the i-th column in I?
Example:
T = (1:10)'
I = mod(T,2) == 0
T(I)'
yields
2 4 6 8 10
However
I = mod(T,2:4) == 0
T(I)'
yields an error in the last statement. I see that the columns might select a different number of elements which results in vectors of different lengths (as in the example). However, even this example doesn't work:
I = zeros(10,2)
I(:,1) = mod(T,2)==0
I(:,2) = mod(T,2)==1
Is there any way to achieve the solution in a one liner?
The easiest way I can think of to do something like this is to take advantage of the element-wise multiplication operator .* with your matrix I. Take this as an example:
% these lines are just setup of your problem
m = 10;
n = 10;
T = [1:m]';
I = randi([0 1], m, n);
% 1 liner to create M
M = repmat(T, 1, n) .* I;
What this does is expand T to be the same size as I using repmat and then multiplies all the elements together using .*.
Here is a one linear solution
mat2cell(T(nonzeros(bsxfun(#times,I,(1:numel(T)).'))),sum(I))
First logical index should be converted to numeric index for it we multiply T by each column of I
idx = bsxfun(#times,I,(1:numel(T)).');
But that index contain zeros we should extract those values that correspond to 1s in matrix I:
idx = nonzeros(idx);
Then we extract repeated elements of T :
T2 = T(idx);
so we need to split T2 to 3 parts size of each part is equal to sum of elements of corresponding column of I and mat2cell is very helpful
result = mat2cell(T2,sum(I));
result
ans =
{
[1,1] =
2
4
6
8
10
[2,1] =
3
6
9
[3,1] =
4
8
}
One line solution using cellfun and mat2cell
nColumns = size(I,2); nRows = size(T,1); % Take the liberty of a line to write cleaner code
cellfun(#(i)T(i),mat2cell(I,nRows,ones(nColumns,1)),'uni',0)
What is going on:
#(i)T(i) % defines a function handle that takes a logical index and returns elements from T for those indexes
mat2cell(I,nRows,ones(nColumns,1)) % Split I such that every column is a cell
'uni',0 % Tell cellfun that the function returns non uniform output

MATLAB: For loop structure [duplicate]

This question already has answers here:
Element-wise array replication in Matlab
(7 answers)
Closed 6 years ago.
This is a basic program but since I'm new to MATLAB, I'm not able to figure out the solution.
I have a column vector "Time" in which I want to print value "1" in first 147 cells, followed by "2" in 148 to 2*147 cells and so on. For that, I have written the following script:
Trial>> c=1;
Trial>> k=0;
Trial>> for i = c:146+c
Time(i,1)=1+k;
c=i;
k=k+1;
end
I know I need to iterate the loop over "Time(i,1)=1+k;" before it executes the next statement. I tried using break but that's not supposed to work. Can anyone suggest me the solution to get the desired results?(It was quite simple in C with just the use of curly braces.)
I am sure you don't want to run c=i; in every iteration.
My code should work for you:
x = 10; % Replace 10 by the max number you need in your array.
k = 1;
for i = 1 : x * 147
Time(i, 1) = k;
if rem(i, 147) == 0
k = k + 1;
end
end
This is the prime example of a piece of code that should be vectorized can help you understand vectorization. Your code can be written like this:
n = 147;
reps = 10; %% Replace this by the maximum number you want your matrix to have
Time = reshape(bsxfun(#plus, zeros(n,1), 0:reps), 1, []);
Explanation:
Let A be a column vector (1 column, n rows), and B be a row vector (1 row, m columns.
What bsxfun(#plus, A, B) will do here is to add all elements in A with all elements in B, like this:
A(1)+B(1) A(1)+B(2) A(1)+B(3) ... A(1)+B(m)
A(2)+B(1) A(2)+B(2) ............. A(2)+B(m)
............................................
A(n)+B(1) A(n)+B(2) .............. A(n)+B(m)
Now, for the two vectors we have: zeros(n,1), and 0:reps, this will give us;
0+0 0+1 0+2 0+reps
0+0 0+1 0+2 0+reps
% n rows of this
So, what we need to do now is place each column underneath each other, so that you will have the column with zeros first, then the row with ones, ... and finally the one with reps (147 in your case).
This can be achieved by reshaping the matrix:
reshape(bsxfun(#plus, zeros(n,1), 0:reps), [], 1);
^ ^ ^ ^
| | | Number of rows in the new matrix. When [] is used, the appropriate value will be chosen by Matlab
| | Number of rows in the new matrix
| matrix to reshape
reshape command
Another approach is using kron:
kron(ones(reps+1, 1) * 0:(n-1)
For the record, a review of your code:
You should always preallocate memory for matrices that are created inside loops. In this case you know it will become a matrix of dimensions ((reps+1)*n-by-1). This means you should do Time = zeros((reps+1)*n, 1);. This will speed up your code a lot.
You shouldn't use i and j as variable names in Matlab, as they denote the imaginary unit (sqrt(-1)). You can for instance do: for ii = 1:(n*147) instead.
You don't want c=i inside the loop, when the loop is supposed to go from c to c + 146. That doesn't make much sense.
You can use repmat,
x = 10; % Sequence length (or what ever it can be called)
M = repmat(1:x,147,1); % Replicate array 1:x for 147 columns
M = M(:); % Reshape the matrix so that is becomes a column vector.
I can assume that this is a task to practice for loops, but this will work.
An alternative solution may be to do
n = 147;
reps = 10;
a = ceil( (1:(n*reps)) / n);
You first construct an array with the length you want. Then you divide, and round of upwards. 1 to 147 will then become 1.

matlab concatenating vectors

I'm new to MATLAB, and programming in general, and I am having difficulty accomplishing what I am sure is a very, very simple task:
I have a list of vectors v_i for i from 1 to n (n in some number), all of the same size k. I would like to create a vector v that is a "concatenation" (don't know if this is the correct terminology) of these vectors in increasing order: what I mean by this is that the first k entries of v are the k entries of v_1, the k+1 to 2k entries of v are the k entries of v_2 etc. etc. Thus v is a vector of length nk.
How should I create v?
To put this into context, here is function I've began writing (rpeakindex will just a vector, roughq would be the vector v I mentioned before):
function roughq = roughq(rpeakindex)
for i from 1 to size(rpeakindex) do
v_i = [rpeakindex(i)-30:1:rpeakindex(i)+90]
end
Any help is appreciated
Let's try two things.
First, for concatenating vectors there are a couple of methods here, but the simplest would be
h = horzcat(v_1, v_2);
The bigger problem is to enumerate all vectors with a "for" loop. If your v_n vectors are in a cell array, and they are in fact v{i}, then
h= [];
for j=1:n
h = horzcat(h, v{i});
end
Finally, if they only differ by name, then call them with
h=[];
for j=1:n
h= horzcat(h, eval(sprintf('v_%d',j));
end
Let the arrays (vectors) be:
v_1=1:10;
v_2=11:20;
v_3=21:30;
v_4=31:40;
and so on.
If they are few (e. g. 4), you can directly set then as input in the cat function:
v=cat(2,v_1,v_2,v_3,v_4)
or the horzcat function
v=horzcat(v_1,v_2,v_3,v_4)
otherwise you can use the eval function within a loop
v1=[];
for i=1:4
eval(['v1=[v1 v_' num2str(i) ']'])
end
Hope this helps.
Concatenating with horzcat is definitely an option, but since these vectors are being created in a function, it would be better to concatenate these vectors automatically in the function itself rather than write out horzcat(v1,v2,....vn) manually.
Given the function mentioned in the question, I would suggest something like this:
function v = roughq(rpeakindex)
v = zeros(121,length(rpeakindex)); %// create a 2D array of all zeros
for i = 1:size(rpeakindex)
v(:,i) = [rpeakindex(i)-30:1:rpeakindex(i)+90]; %// set result to ith column of v
end
v = v(:)'; %'//reshape v to be a single vector with the columns concatenated
end
Here's a simplified example of what's going on:
N = 3;
v = zeros(5,N);
for i = 1:N
v(:,i) = (1:5)*i;
end
v = v(:)';
Output:
v =
1 2 3 4 5 2 4 6 8 10 3 6 9 12 15
You may want to read up on MATLAB's colon operator to understand the v(:) syntax.
If you mean 2d matrix, you are using for holding vectors and each row hold vector v then you can simply use the reshape command in matlab like below:
V = [] ;
for i = 1:10
V(i,:) = randi (10,1 ,10) ;
end
V_reshpae = reshape (V, 1, numel(V)) ;

Matlab programming dealing with matrix

I am trying out one of the matlab programming question.
Question:
Write a function called hulk that takes a row vector v as an input and
returns a matrix H whose first column consist of the elements of v,
whose second column consists of the squares of the elements of v, and
whose third column consists of the cubes of the elements v. For
example, if you call the function likes this, A = hulk(1:3) , then A
will be [ 1 1 1; 2 4 8; 3 9 27 ].
My Code:
function H = hulk(v)
H = [v; v.^2; v.^3];
size(H) = (n,3);
end
When I test my code using A = hulk(1:3), it throws an error on console.
Your function made an error for argument(s) 0
Am I doing something incorrect? Have I missed anything?
Remove the line size(H) = (n,3);
and add the line H = H';
Final code should be as follows
function H = hulk(v)
H = [v; v.^2; v.^3];
H = H';
end
Your code giving error in matlab editor on the size(H) = (n,3); line
That's why you should use the matlabeditor itself
For your future reference, you can very easily generalise this function in Matlab to allow the user to specify the number of cols in your output matrix. I also recommend that you make this function a bit more defensive by ensuring that you are working with column vectors even if your user submits a row vector.
function H = hulk(v, n)
%//Set default value for n to be 3 so it performs like your current function does when called with the same signature (i.e. only 1 argument)
if nargin < 2 %// nargin stands for "Number of ARGuments IN"
n = 3;
end if
%// Next force v to be a row vector using this trick (:)
%// Lastly use the very useful bsxfun function to perform the power calcs
H = bsxfun(#power, v(:), 1:n);
end
You could reduce the number of operations using cumprod. That way, each v.^k is computed as the previous v.^k times v:
function H = hulk(v, n)
H = cumprod(repmat(v,n,1),1);
The first input argument is the vector, and the second is the maximum exponent.

Creating a matrix from a function handle (MATLAB)

What I intend to do is very simple but yet I haven't found a proper way to do it. I have a function handle which depends on two variables, for example:
f = #(i,j) i+j
(mine is quite more complicated, though)
What I'd like to do is to create a matrix M such that
M(i,j) = f(i,j)
Of course I could use a nested loop but I'm trying to avoid those. I've already managed to do this in Maple in a quite simple way:
f:=(i,j)->i+j;
M:=Matrix(N,f);
(Where N is the dimension of the matrix) But I need to use MATLAB for this. For now I'm sticking to the nested loops but I'd really appreciate your help!
Use bsxfun:
>> [ii jj] = ndgrid(1:4 ,1:5); %// change i and j limits as needed
>> M = bsxfun(f, ii, jj)
M =
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
If your function f satisfies the following condition:
C = fun(A,B) accepts arrays A and B of arbitrary, but equal size and returns output of the same size. Each element in the output array C is the result of an operation on the corresponding elements of A and B only. fun must also support scalar expansion, such that if A or B is a scalar, C is the result of applying the scalar to every element in the other input array.
you can dispose of ndgrid. Just add a transpose (.') to the first (i) vector:
>> M = bsxfun(f, (1:4).', 1:5)
Function handles can accept matrices as inputs. Simply pass a square matrix of size N where the values corresponds to the row number for i, and a square matrix of size N where the values correspond to the column number for j.
N = 5;
f = #(i,j) i+j;
M = f(meshgrid(1:N+1), meshgrid(1:N+1)')