In a microservice-based app with a premium user with paid subscription model, should the subscription info be stored in a separate microservice? - rest

I'm designing a microservice-based architecture for an existing monolithic app. The database has a User table, and then a separate Subscription database storing subscription info for premium, subscribed users.
My initial idea was to do something like User Service <-> Subscription Service <-> Payment Service. But a colleague believes that the subscription service is unnecessary and can just be merged with the User Service. What is the best practice for this?

The problem is analogue with the choosing bounded context boundaries problem in DDD. Choosing bounded context can be done with context mapping: https://www.infoq.com/articles/ddd-contextmapping/ As far as I remember another approach is imagining the organization which does the same job manually what you automate with your services and check what departments it should have. The usual example is a webshop for this where for example security, shopping, storage, invoicing, delivery, support can go in different services. All of them have user and some of them has product, but they watch these things from different viewpoints, e.g. in the shopping context the product is something that you have in the catalogue and what the customers choose to add to their basket, for invoicing it is an item in the order with a certain price at the moment of the ordering, for storage it is something that must be found in the physical world, probably has a container number, for delivery it is part of a package and must be delivered to an address. Many times a lot of properties are just copy-paste with different property names in these bounded contexts and the DRY principle is not met. So if the reason why your colleague wants to merge them is meeting the DRY principle, then it does not matter. If they belong together logically and in a real company a single department would do them, then they can be merged. There is not much detail in your question, but I think I would separate the subscription service too and I guess I would rename the user service to security if all it does is registration and handling logins and authorization. If it contains something else too, then it is better to check the boundaries, maybe some of the properties belong to a different service, maybe there is another service which does not exist yet.
Another practical aspect is scalability. You can wait until certain parts of a single service is used a lot more than other parts and think about splitting because of scalability reasons.
Another analogy is choosing class size in OOP. Some people claim the smaller the better, but everybody is comfortable with different class sizes. Of course there are too small classes and overengineering and too big classes, god objects, but there is a range where the class size is acceptable and it depends on the personal taste or convenience which size you choose. I think for microservices this can happen too, so maybe your colleague is just comfortable with bigger services. If you check the name of the technology the service size should be micro. Those this is relative too, micro compared to what...
In my view a single deployable service should be no bigger than a
bounded context, but no smaller than an aggregate. I would also
suggest that it’s better to start with relatively broad service
boundaries to begin with, refactoring to smaller ones as time goes on.
Perhaps “micro” is a misleading prefix here. These are not necessarily
“small” as in “little”. These are services in the classic SOA mould,
except created with more of an agile mind-set including lightweight
infrastructure, decentralized governance and greater emphasis on
automation. Perhaps it’s these more agile aspects of microservice
design that distinguishes them as opposed to size.
https://www.ben-morris.com/how-big-is-a-microservice/
A Microservice shall be no larger than that which allows a two-pizza
team to release a single complete, appropriately sized user story to
production within a single day.
https://kylegenebrown.medium.com/whats-the-right-size-for-a-microservice-bf1740370d47
Microservice developers can start wherever it “feels right”, and over
time split or merge microservices to improve the architecture.
Although I agree that microservice architectures shouldn’t be carved
in stone and that there should always be the option of changing
microservice decomposition, it’d be nice to have more clarity as to
where a good starting point would be.
Identify critical business transactions that require high performance
and/or solid data integrity and trace those transactions through the
microservices in your architecture. If you see problems, consider
changing microservice boundaries and merging a few microservices
together, as an option.
https://www.pipservices.org/blog/whats-the-right-size-for-a-microservice

Related

What are the disadvantages of using Event sourcing and CQRS?

Event sourcing and CQRS is great because it gets rids developers being stuck with one pre-modelled database which the developer has to work with for the lifetime of the application unless there is a big data migration project. CQRS and ES also has other benefits like scaling eventstore, audit log etc. that are already all over the internet.
But what are the disadvantages ?
Here are some disadvantages that I can think of after researching and writing small demo apps
Complex: Some people say ES is complex. But I'd say having a complex application is better than a complex database model on which you can only run very restricted queries using a query language (multiple joins, indexes etc). I mean some programming languages like Scala have very rich collection library that is very flexible to produce some seriously complex aggregations and also there is Apache Spark which makes it easy query distributed collections. But databases will always be restricted to it's query language capabilities and distributing databases are harder then distributed application code (Just deploy another instance on another machine!).
High disk space usage: Event store might end up using a lot of disk space to store events. But we can schedule a clean up every few weeks and creating snapshot and may be we can store historical events locally on an external HD just incase we need old events in the future ?
High memory usage: State of every domain object is stored in memory which might increase RAM usage and we all how expensive RAM is. BIG PROBLEM!! because I'm poor! any solution to this ? May be use Sqlite instead of storing state in memory ? Am I making things more complex by introducing multiple Sqlite instances in my application ?
Longer bootup time: On failure or software upgrade bootup is slow depending on the number of events. But we can use snapshots to solve this ?
Eventual consistency: Problem for some applications. Imagine if Facebook used Event sourcing with CQRS for storing posts and considering how busy facebook's system is and if I posted a post I would see my fb post the next day :)
Serialized events in Event store: Event stores store events as serialized objects which means we can't query the content of events in the event store which is discouraged anyway. And we won't be able to add another attribute to the event in the future. Solution would be to store events as JSON objects instead of Serialized events ? But is that a good idea ? Or add more Events to support the change to orignal event object ?
Can someone please comment on the disadvantages I brought up here and correct me if I am wrong and suggest any other I may have missed out ?
Here is my take on this.
CQRS + ES can make things a lot simpler in complex software systems by having rich domain objects, simple data models, history tracking, more visibility into concurrency problems, scalability and much more. It does require a different way thinking about the systems so it could be difficult to find qualified developers. But CQRS makes it simpler to separate responsibilities across developers. For example, a junior developer can work purely with the read side without having to touch business logic.
Copies of data will require more disk space for sure. But storage is relatively cheap these days. It may require the IT support team to do more backups and planning how to restore the system in a case in things go wrong. However, server virtualization these days makes it a more streamlined workflow. Also, it is much easier to create redundancy in the system without a monolithic database.
I do not consider higher memory usage a problem. Business object hydration should be done on demand. Objects should not keep references to events that have already been persisted. And event hydration should happen only when persisting data. On the read side you do not have Entity -> DTO -> ViewModel conversions that usually happened in tiered systems, and you would not have any kind of object change tracking that full featured ORMs usually do. Most systems perform significantly more reads than writes.
Longer boot up time can be a slight problem if you are using multiple heterogeneous databases due to initialization of various data contexts. However, if you are using something simple like ADO .NET to interact with the event store and a micro-ORM for the read side, the system will "cold start" faster than any full featured ORM. The important thing here is not to over-complicate how you access the data. That is actually a problem CQRS is supposed to solve. And as I said before, the read side should be modeled for the views and not have any overhead of re-mapping data.
Two-phase commit can work well for systems that do not need to scale for thousands of users in my experience. You would need to choose databases that would work well with the distributed transaction coordinator. PostgreSQL can work well for read and write separate models, for example. If the system needs to scale for a high number of concurrent users, it would have to be designed with eventual consistency in mind. There are cases where you would have aggregate roots or context boundaries that do not use CQRS to avoid eventual consistency. It makes sense for non-collaborative parts of the domain.
You can query events in serialized a format like JSON or XML, if you choose the right database for the event store. And that should be only done for purposes of analytics. Nothing inside the system should query event store by anything other than the aggregate root id and the event type. That data would be indexed and live outside the serialized event.
Just to comment on point 5. I've been told that Facebook does use ES with Eventual Consistency, which is why you can sometimes see a post disappear and reappear after you've posted it.
Usually the read-model your browser is accessing is located 'close' to you, but after you make a post the SPA switches over to a read-model that is close to your write-model. The close proximity between the write-model (events) and the read-model mean you get to see your own post.
However, 15 minutes later your SPA switches back to the first, closer, read-model. If the event containing your post hasn't yet propagated to that read-model you'll see your own post disappear only to reappear sometime later.
I know it's been almost 3 years since this question was asked, but still this article may be useful for someone. Key points are
Scaling with snapshots
Visibility of data
Schema changing
Dealing with complex domains
Need to explain it to most new team members
Event sourcing and CQRS is great because it gets rids developers being stuck with one pre-modeled database which the developer has to work with for the lifetime of the application unless there is a big data migration project.
This is a big misconception. The relational databases were invented exactly for the evolution of the model (thanks to simple two-dimensional tables as opposed to pre-defined hierarchical structures). With views and procedures ensuring the encapsulation of data access, the logical and physical model can evolve independently. This is also why SQL defines DDL and DML in the same language. Some RDBMS also allow all those evolutions to be versioned and deployed online (continuous delivery) as Oracle Edition Based Redefinition.
Big data structures are predefined and can be read only with the code developed for this structure. Ok when consumed immediately but you will have hard time to read it 10 years later without the exact version, and language compiler or interpreter.
I hope to not be late to try to give an answer. In these months I've done a lot of research on that argument with the goal of implementing a production-grade solution for some parts of my architecture where ES can make sense
Complex: Actually, it should not be complex, its mission is to be deadly simple. How? pushing all the complexity from business logic code to infrastructure code. The data access should be done by frameworks that are not enough mature yet. Still, there is no clear winner in the ES/CQRS race, maybe because is still a niche/hipster approach (?) So some team is rolling its own solution or adopting some ready-made technology such as Axon
High disk space usage: I would say more, I would say * potentially infinite* Disk Usage. But if you go towards ES, you also have a very good reason to tolerate this apparent drawback. Let's give some of them:
Audit Logs : The datastore is an event log, we already know it. Financial apps or every mission/safety critical could need a centralized audit log that enables to state Who made What in Which moment. ES provides this capability of the box...you can also decorate your event entries with some business meaningful metadata (eg. a transaction Id correlated with some API consumer identity, A severity level of the operation...)
High Concurrency: there are systems where logical resource states are mutated by many clients in a concurrent way. These are games, IoT platforms, and so on. Logging events instead of change a state representation could be a smart way to provide a total order of events. The other way is to delegate to DB the synchronization stuff. But this is not what you want if you're into ES
Analytics Let's say you have a lot of data with a lot of business value, but you still don't know which. For years we extracted knowledge from applications information by translating data organization with different information models (OLAP cubes). The event store provides something similar out of the box again. Event logs is the rawest form of representation of information And you can have many ways to process them, in batch or reacting to events stored
High memory usage: I think it should be the same once you have built your projection
Longer bootup time: If the read side caches its projections and "remembers" the last update event, it should not re-apply the entire event sequence. Snapshots are mitigation but if you do a lot of snapshots maybe you made a bad choice with ES. I think that this problem is minor in microservices ecosystems, where the boot time can be masked without service interruption. In fact, you get the most out of ES/CQRS when you apply it so microservices
Eventual consistency: Blame CAP theorem for this, not ES. Many non ES/CQRS have to deal with this, but there are a lot of scenarios where it is not a real problem. These are the scenarios where ES fits well. And you can mix ES and non ES services into the same platform
Serialized events in Event store: if it's important to have a non-serialized event representation, you could use a document-oriented DB, but if you do this to make queries over events payload, you are missing the point of ES/CQRS. ES means to move all data manipulation from the DB side to the application tier, where every piece changes fastly, and all are stateless. This enhances scalability and fault tolerance and provides means to shape the organization of your team, doing things like let the frontend guy/girl write his/her BFF in javascript easily.
I hope to put into practices this principles with good results and draw on the benefits of this exciting approach

Service Oriented Architecture approach

Is SOA solution by making a centralized service which works as a central backbone service for all other services is a good approach?
Its doable, but you need to consider service granularity.
Incorrect granularity could mean that a service covers too much functionality or too little functionality.
Incorrect granularity of services in your SOA can lead to bad performance, low reuse possibilities, leaky abstractions and services without added business value.
Other problems:
You're not able to explain to business people (e.g. sales/marketing) what the service does. It simply does not fit in their understanding of the business the company is in. The services are at a level of detail that is irrelevant from a business perspective.
Many different services are needed to achieve something of value to the business.
There is no clear ownership of the service, multiple department feel they should own the service (or parts of it).

Erlang/OTP architecture: RESTful protocol for SOAish services

Let us imagine we have an orders processing system for a pizza shop to design and build.
The requirements are:
R1. The system should be client- and use-case-agnostic, which means that the system can be accessed by a client which was not taken into account during the initial design. For example, if the pizza shop decides that many of its customers use the Samsung Bada smartphones later, writing a client for Bada OS will not require rewriting the system's API and the system itself; or for instance, if it turns out that using iPads instead of Android devices is somehow better for delivery drivers, then it would be easy to create an iPad client and will not affect the system's API in any way;
R2. Reusability, which means that the system can be easily reconfigured without rewriting much code if the business process changes. For example, if later the pizza shop will start accepting payments online along with accepting cash by delivery drivers (accepting a payment before taking an order VS accepting a payment on delivery), then it would be easy to adapt the system to the new business process;
R3. High-availability and fault-tolerance, which means that the system should be online and should accept orders 24/7.
So, in order to meet R3 we could use Erlang/OTP and have the following architecture:
The problem here is that this kind of architecture has a lot of "hard-coded" functionality in it. If, for example, the pizza shop will move from accepting cash payments on delivery to accepting online payments before the order is placed, then it will take a lot of time and effort to rewrite the whole system and modify the system's API.
Moreover, if the pizza shop will need some enhancements to its CRM client, then again we would have to rewrite the API, the clients and the system itself.
So, the following architecture is aimed to solve those problems and thus to help meeting R1, R2 and R3:
Each 'service' in the system is a Webmachine webserver with a RESTful API. Such an approach has the following benefits:
all goodness of Erlang/OTP, since each Webmachine is an Erlang application, which can be supervised and can be put into an Erlang release;
service oriented architecture with all the benefits of SOA;
easy adaptable to changes in the business process;
easy to add new clients and new functions to clients (e.g. to the CRM client), because a client can use RESTful APIs of all the services in the system instead of one 'central' API (Service composability in terms of SOA).
So, essentially, the system architecture proposed in the second picture is a Service Oriented Architecture where each service has a RESTful API instead of a WSDL contract and where each service is an Erlang/OTP application.
And here are my questions:
Picture 2: Am I trying to reinvent the wheel here? Should I just stick with the pure Erlang/OTP architecture instead? ("Pure Erlang" means Erlang applications packed into a release, talking to each other via
gen_server:call and gen_server:cast function calls);
Can you name any disadvantages in suggested approach? (Picture 2)
Do you think it would be easier to maintain and grow (R1 and R2) a system like this (Picture 2) than a truly Erlang/OTP one?
The security of such a system (Picture 2) could be an issue, since there are many entry points open to the web (RESTful APIs of all services) instead of just one entry point (Picture 1), isn't it so?
Is it ok to have several 'orchestrating modules' in such a system or maybe some better practice exists? ("Accept orders", "CRM" and "Dispatch orders" services on Picture 2);
Does pure Erlang/OTP (Picture 1) have any advantages over this approach (Picture 2) in terms of message passing and the limitations of the protocol? (partly discussed in my previous similar question, gen_server:call VS HTTP RESTful calls)
The thing to keep in mind regarding SOA is that the architecture is not about the technology (REST, WS* ). So you can get a good SOA in place with endpoints of several types if/when needed (what I call an Edge component - separating business logic from other concerns like communications and protocols)
Also it is important to note that service boundary is a trust boundary so when you cross it you may need to authenticate and authorize, cross network etc. Additionally, separation into layers (like data and logic) shouldn't drive the way you partition your services.
So from what I am reading in your questions, I'd probably partition the services into more coarse grained services (see below). communications within the boundary of the service can be whatever, where-as communications across services uses a public API (REST or Erlang native is up to you, but the point is that it is managed, versioned, secured etc.) - again, a service may have endpoints in multiple technologies to facilitate different users (sometimes you'd use an ESB to mediate between services and protocols but the need for that depends on size and complexity of your system)
Regarding your specific questions
1 As noted above, I think theres a place to expose more public APIs
than just a single entry point, I am not sure that exposing each and
every capability as a service with public-api is the right way to go
see.
2&3 The disadvantages of exposing every little thing is
management overhead, decreased performance (e.g. you'd have to
authenticate on these calls). You get nano-services services
whose overhead is more than their utility.
One thing to add about the security is that the fact that some service has a REST API does not have to translate to having that API available to the general public. Deployment-wise you can keep it behind a firewall and restrict the access to it for known addresses
etc.
5 It is ok to have several orchestrating modules, though if you get beyond a few you should probably consider some orchestration module (and ESB or an Orchestration engine) alternatively you can use event based integration and get choreography based integration which is more flexible (but somewhat less manageable )
6 The first option has the advantage of easy development and probably better performance (if that's an issue). The hard-coded integration layer can prove harder to maintain over time. The erlang services, if you wrote them write should be able to evolve independently if you keep API integration and message passing between them (luckily Erland makes it relatively easy to get this right by its inherent features (e.g. immutability))
I'd introduce the third way that is rather more cost effective and change-reactive. The architecture definitely should be service oriented because you have services explicitly. But there's no requirement to expose each service as Restful or WSDL-defined one. I'm not an Erlang developer but I believe there's a way to invoke local and remote processes by messaging and thus avoid unnecessary serialisation/serialisation activities for internal calls. But one day you will be faced with new integration issue. For example you will be to integrate accounting or logistic system. Then if you designed architecture well regarding SOA principles the most efforts will be related to exposing existing service with RESTful front-end wrapper with no effort to refactor existing connections to other services. But the issue is to keep domain of responsibilities clean. I mean each service should be responsible to the activity it was originally designed.
The security issue you mentioned is known one. You should have authentication/authorization in all exposed services using tokens for example.

How to manage multiple clients with slightly different business rules? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 years ago.
Improve this question
We have written a software package for a particular niche industry. This package has been pretty successful, to the extent that we have signed up several different clients in the industry, who use us as a hosted solution provider, and many others are knocking on our doors. If we achieve the kind of success that we're aiming for, we will have literally hundreds of clients, each with their own web site hosted on our servers.
Trouble is, each client comes in with their own little customizations and tweaks that they need for their own local circumstances and conditions, often (but not always) based on local state or even county legislation or bureaucracy. So while probably 90-95% of the system is the same across all clients, we're going to have to build and support these little customizations.
Moreover, the system is still very much a work in progress. There are enhancements and bug fixes happening continually on the core system that need to be applied across all clients.
We are writing code in .NET (ASP, C#), MS-SQL 2005 is our DB server, and we're using SourceGear Vault as our source control system. I have worked with branching in Vault before, and it's great if you only need to keep 2 or 3 branches synchronized - but we're looking at maintaining hundreds of branches, which is just unthinkable.
My question is: How do you recommend we manage all this?
I expect answers will be addressing things like object architecture, web server architecture, source control management, developer teams etc. I have a few ideas of my own, but I have no real experience in managing something like this, and I'd really appreciate hearing from people who have done this sort of thing before.
Thanks!
I would recommend against maintaining separate code branches per customer. This is a nightmare to maintain working code against your Core.
I do recommend you do implement the Strategy Pattern and cover your "customer customizations" with automated tests (e.g. Unit & Functional) whenever you are changing your Core.
UPDATE:
I recommend that before you get too many customers, you need to establish a system of creating and updating each of their websites. How involved you get is going to be balanced by your current revenue stream of course, but you should have an end in mind.
For example, when you just signed up Customer X (hopefully all via the web), their website will be created in XX minutes and send the customer an email stating it's ready.
You definitely want to setup a Continuous Integration (CI) environment. TeamCity is a great tool, and free.
With this in place, you'll be able to check your updates in a staging environment and can then apply those patches across your production instances.
Bottom Line: Once you get over a handful of customers, you need to start thinking about automating your operations and your deployment as yet another application to itself.
UPDATE: This post highlights the negative effects of branching per customer.
Our software has very similar requirements and I've picked up a few things over the years.
First of all, such customizations will cost you both in the short and long-term. If you have control over it, place some checks and balances such that sales & marketing do not over-zealously sell customizations.
I agree with the other posters that say NOT to use source control to manage this. It should be built into the project architecture wherever possible. When I first began working for my current employer, source control was being used for this and it quickly became a nightmare.
We use a separate database for each client, mainly because for many of our clients, the law or the client themselves require it due to privacy concerns, etc...
I would say that the business logic differences have probably been the least difficult part of the experience for us (your mileage may vary depending on the nature of the customizations required). For us, most variations in business logic can be broken down into a set of configuration values which we store in an xml file that is modified upon deployment (if machine specific) or stored in a client-specific folder and kept in source control (explained below). The business logic obtains these values at runtime and adjusts its execution appropriately. You can use this in concert with various strategy and factory patterns as well -- config fields can contain names of strategies etc... . Also, unit testing can be used to verify that you haven't broken things for other clients when you make changes. Currently, adding most new clients to the system involves simply mixing/matching the appropriate config values (as far as business logic is concerned).
More of a problem for us is managing the content of the site itself including the pages/style sheets/text strings/images, all of which our clients often want customized. The current approach that I've taken for this is to create a folder tree for each client that mirrors the main site - this tree is rooted at a folder named "custom" that is located in the main site folder and deployed with the site. Content placed in the client-specific set of folders either overrides or merges with the default content (depending on file type). At runtime the correct file is chosen based on the current context (user, language, etc...). The site can be made to serve multiple clients this way. Efficiency may also be a concern - you can use caching, etc... to make it faster (I use a custom VirtualPathProvider). The largest problem we run into is the burden of visually testing all of these pages when we need to make changes. Basically, to be 100% sure you haven't broken something in a client's custom setup when you have changed a shared stylesheet, image, etc... you would have to visually inspect every single page after any significant design change. I've developed some "feel" over time as to what changes can be comfortably made without breaking things, but it's still not a foolproof system by any means.
In my case I also have no control other than offering my opinion over which visual/code customizations are sold so MANY more of them than I would like have been sold and implemented.
This is not something that you want to solve with source control management, but within the architecture of your application.
I would come up with some sort of plugin like architecture. Which plugins to use for which website would then become a configuration issue and not a source control issue.
This allows you to use branches, etc. for the stuff that they are intended for: parallel development of code between (or maybe even over) releases. Each plugin becomes a seperate project (or subproject) within your source code system. This also allows you to combine all plugins and your main application into one visual studio solution to help with dependency analisys etc.
Loosely coupling the various components in your application is the best way to go.
As mention before, source control does not sound like a good solution for your problem. To me it sounds that is better yo have a single code base using a multi-tenant architecture. This way you get a lot of benefits in terms of managing your application, load on the service, scalability, etc.
Our product using this approach and what we have is some (a lot) of core functionality that is the same for all clients, custom modules that are used by one or more clients and at the core a the "customization" is a simple workflow engine that uses different workflows for different clients, so each clients gets the core functionality, its own workflow(s) and some extended set of modules that are either client specific or generalized for more that one client.
Here's something to get you started on multi-tenancy architecture:
Multi-Tenant Data Architecture
SaaS database tenancy patterns
Without more info, such as types of client specific customization, one can only guess how deep or superficial the changes are. Some simple/standard approaches to consider:
If you can keep a central config specifying the uniqueness from client to client
If you can centralize the business rules to one class or group of classes
If you can store the business rules in the database and pull out based on client
If the business rules can all be DB/SQL based (each client having their own DB
Overall hard coding differences based on client name/id is very problematic, keeping different code bases per client is costly (think of the complete testing/retesting time required for the 90% that doesn't change)...I think more info is required to properly answer (give some specifics)
Layer the application. One of those layers contains customizations and should be able to be pulled out at any time without affect on the rest of the system. Application- and DB-level "triggers" (quoted because they may or many not employ actual DB triggers) that call customer-specific code or are parametrized with customer keys) are very helpful.
Core should never be customized, but you must layer it in somewhere, even if it is simplistic web filtering.
What we have is a a core datbase that has the functionality that all clients get. Then each client has a separate database that contains the customizations for that client. This is expensive in terms of maintenance. The other problem is that when two clients ask for a simliar functionality, it is often done differnetly by the two separate teams. There is currently little done to share custiomizations between clients and make common ones become part of the core application. Each client has their own application portal, so we don't have the worry about a change to one client affecting some other client.
Right now we are looking at changing to a process using a rules engine, but there is some concern that the perfomance won't be there for the number of records we need to be able to process. However, in your circumstances, this might be a viable alternative.
I've used some applications that offered the following customizations:
Web pages were configurable - we could drag fields out of view, position them where we wanted with our own name for the field label.
Add our own views or stored procedures and use them in: data grids (along with an update proc) and reports. Each client would need their own database.
Custom mapping of Excel files to import data into system.
Add our own calculated fields.
Ability to run custom scripts on forms during various events.
Identify our own custom fields.
If you clients are larger companies, you're almost going to need your own SDK, API's, etc.

Service and/or Commodity

Do we create services when we write programs, or are they commodities?
Are we like window-washers in that our programs(actions) provide some services to the users?
OR: are we like carpenters in that our programs(products) are sold and used by their new owners?
Or should this be seen in different aspects: The act of programming being a service, and the resulting program is a product?
The above has a direct impact on the following question: Is it theft or fraud when you copy software that you have no rights to? Theft is the physical removal of an object of value from the possession of another; fraud is representation of a falsehood in such a way that leads to the economic loss of the victim (the representation here being your assumption of right-to-copy).
It also impacts on questions of causal liability: If the program you wrote to crack passwords are used by others to rob a bank: are you an accomplice? If your program is a service then it could be argued that you are; if a commodity then you 'should' be in the clear.
Or: should each program be treated as a unique instance, based purely on the intentions of that program's originator, as to wether it should be treated as a service or commodity? Or should the user's intentions be used?
How does this reflect on the open-source world where many programs are available that seemingly infringe on commercial rights, e.g.: copy-protection and DRM circumventions?
(This impacts us all every time that we write code.)
It's both actually.
Sometime you sell a product which just works. It's a commodity. A notepad program for example is a commodity, you don't go into any relationship with its author. Most small tools fall into this category.
Sometimes you develop a custom application tailored for your specific user, or you integrate an existing product with their legacy applications and adjust it to work for their specific situation. It's definitely a service and you are usually in a long-term relationship with the customer. Most 'big'/expensive programs fall into this category. You could buy MS SharePoint Server license as a commodity but in most scenarios most likely you will also buy a service of someone to make it work for you.