I am trying to recreate the distortion that compression drivers have.
I am specifically aiming to recreate the even harmonics they add to square waves.
e.g. https://www.youtube.com/watch?v=G4FGFJNaA9k&t=4s
The drivers receive a 465hz square tone, but the drivers add even harmonics making it sound different.
The distortion amount varies based on the input volume.
I have tried applying a highpass filter, then doing half-wave rectification. This gets the job done, but doesn't sound right.
I have also tried using a slew rate limiter to limit the fall-off speed, but it still does not sound right.
Related
I have some code that block processes the xcorr command with parallel computing too. I want to test how robust cross correlation is with data that has lower S/N.
The only problem is I don't quite know how to apply this. I have an audio file with animal calls. It is mostly noise with intermittent calls. all the calls have different S/N. If you look at the Short Term Fourier Transform spectrogram of the animal call, you will see a blob with a distribution of different intensities.
I want to lower the S/N of these calls so that the shape of the distribution of intensities is still the same, it's just that they are smaller in intensity.
To successfully lower the S/N of the audio, I'm assuming I don't want to change the background noise values either, so only the calls themselves are lowering in amplitude but not the noise.
I don't quite know how I can program this, can I get some help please?
I think you can safely just add extra noise to the whole sample, this is common when testing robustness: if your original sample has say 50 units** of signal and 50 units of noise (SNR of 50/50) then adding say 100 units of noise will lead to a SNR or 50/150, which is lower.
**subject to discussion of what constitutes a unit - power vs voltage, dBs or whatever, it's just for the sake of an example.
If it's important what type of noise you add then perhaps you could copy some from the sections without samples in - doing this manually is usually efficient enough when creating test cases. Alternatively rand will give you random numbers and rng will let you control the distribution.
An alternative method might be to apply a compression function to the spectrograph and then apply the inverse transform to bring it back to the time domain. Beware of using modified versions of your training data to test the algorithm, if you have sufficient data you'd be best to reserve some for testing.
To do this with a sound file editor (plus a file full of noise of your desired distribution and type), first turn down the level of the original file until the signal is at your desired lower level, then mix in the noise file to bring the noise back up to the original level (by setting the appropriate mixer parameters). The resulting mix will have a lower S/N.
I'm hoping someone will be able to tell me why no filtering is helping in my application.
I have a MEMS microphone monitoring the pressure of a small chamber, which has a membrane stretched over the far end. This device is placed on a human muscle and when I flex said muscle the membrane is disturbed, producing a pressure difference in the chamber, which the microphone picks up. Therefore, by flexing a muscle I can see nice spikes of activity. However, this method is very susceptible to noise, both motion artefacts and other undesirable artefacts.
The muscle activity I'm interested in is above 10Hz and below 100Hz, so I'm trying to bandpass (or at the very least, highpass) the noise. If I tap the device, or if I have the device on my upper forearm and tap my wrist, I'm to understand that this is a very low frequency noise, somewhere in the region of 1Hz/2Hz, but I can't get rid of this noise!
I'm using MATLAB to process. Generally I sample this microphone at 1KHz, but I currently have it hooked up to a DAQ at 5KHz sampling rate. I desperately want to get rid of this low frequency noise but nothing I try seems to make any difference, it's very hard to see what the filter is doing at all. It's definitely attenuating the signal, but not getting rid of the noise I want. I don't expect perfect results, but certainly better than what I'm seeing.
I've used lots of methods to create filters in MATLAB (manually and fdatool), along with different types of filters (Butterworth, Chebyshev, Elliptic) all not helping. I'm worried that my desired frequency of 10Hz is perhaps too close to the noise I'm trying to filter out, and it's not able to attenuate the noise enough.
Any ideas, code samples, or recommendations would be very helpful.
Tapping or percussive sounds are broad spectrum, producing frequency content well above the repeat rate of 1 Hz or so. So any linear band pass or high pass filter will not be able to completely remove this broad spectrum noise.
My project:
I'm developing a slot car with 3-axis accelerometer and gyroscope, trying to estimate the car pose (x, y, z, yaw, pitch) but I have a big problem with my vibration noise (while the car is running, the gears induce vibration and the track also gets it worse) because the noise takes values between ±4[g] (where g = 9.81 [m/s^2]) for the accelerometers, for example.
I know (because I observe it), the noise is correlated for all of my sensors
In my first attempt, I tried to work it out with a Kalman filter, but it didn't work because values of my state vectors had a really big noise.
EDIT2: In my second attempt I tried a low pass filter before the Kalman filter, but it only slowed down my system and didn't filter the low components of the noise. At this point I realized this noise might be composed of low and high frecuency components.
I was learning about adaptive filters (LMS and RLS) but I realized I don't have a noise signal and if I use one accelerometer signal to filter other axis' accelerometer, I don't get absolute values, so It doesn't work.
EDIT: I'm having problems trying to find some example code for adaptive filters. If anyone knows about something similar, I will be very thankful.
Here is my question:
Does anyone know about a filter or have any idea about how I could fix it and filter my signals correctly?
Thank you so much in advance,
XNor
PD: I apologize for any mistake I could have, english is not my mother tongue
The first thing i would do, would be to run a DFT on the sensor signal and see if there is actually a high and low frequency component of your accelerometer signals.
With a DFT you should be able to determine an optimum cutoff frequency of your lowpass/bandpass filter.
If you have a constant component on the Z axis, there is a chance that you haven't filtered out gravity. Note that if there is a significant pitch or roll this constant can be seen on your X and Y axes as well
Generally pose estimation with an accelerometer is not a good idea as you need to integrate the acceleration signals twice to get a pose. If the signal is noisy you are going to be in trouble already after a couple of seconds if the noise is not 100% evenly distributed between + and -.
If we assume that there is no noise coming from your gears, even the conversion accuracy of the Accelerometer might start to mess up your pose after a couple of minutes.
I would definately use a second sensor, eg a compass/encoder in combination with your mathematical model and combine all your sensor data in a kalmann filter(Sensor fusion).
You might also be able to derive a black box model of your noise by assuming that it is correlated with your motors RPM. (Box-jenkins/Arma/Arima).
I had similar problems with noise with low and high frequencies and I managed to decently remove it without removing good signal too by using an universal microphone shock mount. It does a good job with gyroscope too especially if you find one which fits it (or you can put it in a small case then mount it)
It basically uses elastic strings to remove shocks and vibration.
Have you tried a simple low-pass filter on the data? I'd guess that the vibration frequency is much higher than the frequencies in normal car acceleration data. At least in normal driving. Crashes might be another story...
I have two wave files, one is normal version, another one is distorted version. In distorted version, I hear a long beep like sound. Here are the frequency domain plots of normal and distorted version sounds. First one is normal, second one is distorted. notice the scales.
How do I go about this?
It's a bit hard to tell without using a marker or zooming in, but it seems you have a sinusoid inserted to your signal, which would explain the continuous beep you hear and the delta like function you have in the spectrum. Try to locate the noise frequency using the marker and filtering it using the filter design tool (type "fdatool" in the command line). I would go for a notch filter at the frequency of the noise, and if this doesn't work a high (~1000) order high pass FIR filter.
Good luck
Since you have the signal in frequency domain, you can also remove the noise there (with a simple threshold) and then you take inverse Fourier transform and you get the noise free signal in time domain.
I'm trying to write a simple tuner (no, not to make yet another tuner app), and am looking at the AurioTouch sample source (has anyone tried to comment this code??).
My worry is that aurioTouch doesn't seem to actually work very well when looking at the frequency domain graph. I play a single note on an instrument and I don't see a nicely ordered, small, set of frequencies with one string peak at the appropriate frequency of the note.
Has anyone used aurioTouch enough to know whether the underlying code is functional or whether it is just a crude sample?
Other options I have are to use FFTW or KISS FFT. Anyone have any experience with those?
Thanks.
You're expecting the wrong thing!!
Not the library's fault
Whether the library produces it properly or not, you're looking for a pattern that rarely actually exists in real-life sounds. Only a perfect sine wave, electronically generated, will cause an even partway discrete appearing 'spike' in the freq. graph. If you don't believe it try firing up a 'spectrum analyzer' visualization in winamp or media player. It's not so much the PC's fault.
Real sound waves are complicated animals
Picture a sawtooth or sqaure wave in your mind's eye. those sharp turnaround - corners or points on the wave, look like tons of higher harmonics to the FFT or even a real fourier. And if you've ever seen a real 'sqaure wave/sawtooth' on a scope, or even a 'sine wave' produced by an instrument that is supposed to produce a sinewave, take a look at all the sharp nooks and crannies in just ONE note (if you don't have a scope just zoom way in on the wave in audacity - the more you zoom, the higher notes you're looking at). Yep, those deviations all count as frequencies.
It's hard to tell the difference between one note and a whole orchestra sometimes in a spectrum analysis.
But I hear single notes!
So how does the ear do it? It considers the entire waveform. Then your lower brain lies to your upper brain about what the input is: one note, not a mess of overtones.
You can't do it as fully, but you can approximate it via 'training.'
Approximation: building some smarts
PLAY the note on the instrument and 'save' the frequency graph. Do this for notes in several frequency ranges, or better yet all notes.
Then interpolate the notes to fill in gaps (by 1/2 or 1/4 steps) by multiplying the saved graphs for that instrument by 2^(1/12) (or 1/24 for 1/4 steps, etc).
Figure out how to store them in a quickly-searchable data structure like a BST or trie. Only it would have to return a 'how close is this' score. It would have to identify the match via proportions of frequencies as well, in case it came in different volumes.
Using the smarts
Next time you're looking for a note from that instrument, just take the 'heard' freq graph and find it in that data structure. You can record several instruments that make different waveforms and search for them too. If there are background sounds or multiple notes, take the closest match. Then if you want to identify other notes, 'subtract' the found frequency pattern from the sampled one, and rinse, lather repeat.
It won't work by your voice...
If you ever tried to tune yourself by singing into a guitar tuner, you'll know that tuners arent that clever. Of course some instruments (voice esp) really float around the pitch and generate an ever-evolving waveform (even without somebody singing).
What are you trying to accomplish?
You would not have to totally get this fancy for a 'simple' tuner app, but if you're not making just another tuner app them I'm guessing you actually want to identify notes (e.g., maybe you want to autogenerate midi files from songs on the radio ;-)
Good luck. I hope you find a library that does all this junk instead of having to roll your own.
Edit 2017
Note this webpage: http://www.feilding.net/sfuad/musi3012-01/html/lectures/015_instruments_II.htm
Well down the page, there are spectrum analyses of various organ pipes. There are many, many overtones. These are possible to detect - with enough work - if you 'train' your app with them first (just like telling a kid, 'this is what a clarinet sounds like...')
aurioTouch looks weird because the frequency axis is on a linear scale. It's very difficult to interpret FFT output when the x-axis is anything other than a logarithmic scale (traditionally log2).
If you can't use aurioTouch's integer-FFT, check out my library:
http://github.com/alexbw/iPhoneFFT
It uses double-precision, has support for multiple window types, and implements Welch's method (which should give you more stable spectra when viewed over time).
#zaph, the FFT does compute a true Discrete Fourier Transform. It is simply an efficient algorithm that takes advantage of the bit-wise representation of digital signals.
FFTs use frequency bins and the bin frequency width is based on the FFT parameters. To find a frequency you will need to record it sampled at a rate at least twice the highest frequency present in the sample. Then find the time between the cycles. If it is not a pure frequency this will of course be harder.
I am using Ooura FFT to compute the FFT of acceleromter data. I do not always obtain the correct spectrum. For some reason, Ooura FFT produces completely wrong results with spectral magnitudes of the order 10^200 across all frequencies.