Single distributed system to handle large and small transactions - kubernetes

I have a kafka topic. The producer publishes 2 kinds of messages to this topic. Large messages which take more time to process and then small or fast processing messages. The small messages are of large volume (80%). The consumer receives these messages and sends these messages to our processing system. Our processing system have set of microservices deployed in Kubernetes environment as pods (which provides option to scaling).
I have to get the overall processing time as 200ms per transaction and system processing speed of (with scaling) to 10000 tps.
Now what is the better way to design this system in such way that small messages are processed with no blockage from large messages. Or is there a way to isolate the large messages in same channel without impacting processing small messages. Looking for your valuable inputs.
I have put a sample control flow of our system
.
The one option which I have is that consumer diverts the large message to one system and small messages to other system. But this doesn't seem like a good design and nightmare to maintain 2 systems with same functionalities. Also this could lead improper resource allocation.

I will assume large message and small messages can be processed out of order. Otherwise small messages will have to wait for large message and there is no parallelization possible.
I will also assume, you can not change producer to write large messages to another topic. Otherwise, you can just ask producers to send large messages to a different topic, with lesser number of consumers, so large messages will not block small messages.
Ok, with above two assumptions, following is the simplest solution:
On the consumer, if you read a small message, forward it to the message parser as you are doing today.
On the consumer, if you read a large message, instead of forwarding to the message parser, send it to another topic. Let's call it "Large Message Topic"
Configure limited number of consumers on the "Large Message Topic" to read and process large messages.
Alternatively, you will have to take control of commit offset, and add a little more complexity to your consumer code. You can use the solution below:
Disable auto commit, don't call commit on consumer after reading each batch.
If you read a small message, forward it to the message parser as you are doing today.
If you read large messages, send them to another thread/thread pool on your consumer process, that will forward it to the message parser. This thread pool processes in coming messages in a sequence, and keeps track of last offset completed.
Once in a while, you call commit with offset = min (consumer offset, large message offset)

Related

Kafka and Event Streaming On Client Side?

I need to consume messages from a event source (represented as a single Kafka topic) producing about 50k to 250k events per second. It only provides a single partition and the ping is quite high (90-100ms).
As far as I have learned by reading the Kafka client code, during polling a fetch request is issued and once the response is fully read, the events/messages are parsed and deserialized and once enough events/messages are available consumer.poll() will provide the subset to the calling application.
In my case this makes the whole thing not worth while. The best throughput I achieve with about 2s duration per fetch request (about 2.5MB fetch.max.bytes). Smaller fetch durations will increase the idle time (time the consumer does not receive any bytes) between last byte of previous response, parsing, deserialization and sending next request and waiting for the first byte of the next request's response.
Using a fetch duration of about 2s results in a max latency of 2s which is highly undesirable. What I would like to see is while receiving the fetch response, that the messages transmitted are already available to the consumer as soon as a individual message is fully transmitted.
Since every message has an individual id and the messages are send in a particular order while only a single consumer (+thread) for a single partition is active, it is not a problem to suppress retransmitted messages in case a fetch response is aborted / fails and its messages were partially processed and later on retransmitted.
So the big question is, if the Kafka client provides a possibility to consume messages from a not-yet completed fetch response.
That is a pretty large amount of messages coming in through a single partition. Since you can't control anything on the Kafka server, the best you can do is configure your client to be as efficient as possible, assuming you have access to Kafka client configuration parameters. You didn't mention anything about needing to consume the messages as fast as they're generated, so I'm assuming you don't need that. Also I didn't see any info about average message size, how much message sizes vary, but unless those are crazy values, the suggestions below should help.
The first thing you need to do is set max.poll.records on the client side to a smallish number, say, start with 10000, and see how much throughput that gets you. Make sure to consume without doing anything with the messages, just dump them on the floor, and then call poll() again. This is just to benchmark how much performance you can get with your fixed server setup. Then, increase or decrease that number depending on if you need better throughput or latency. You should be able to get a best scenario after playing with this for a while.
After having done the above, the next step is to change your code so it dumps all received messages to an internal in-memory queue, and then call poll() again. This is especially important if processing of each message requires DB access, hitting external APIs, etc. If you take even 100ms to process 1K messages, that can reduce your performance in half in your case (100ms to poll/receive, and then another 100ms to process the messages received before you start the next poll())
Without having access to Kafka configuration parameters on the server side, I believe the above should get you pretty close to an optimal throughput for your configuration.
Feel free to post more details in your question, and I'd be happy to update my answer if that doesn't help.
To deal with such a high throughput, this is what community recommendations for number of partitions on a source topic. And it is worth considering all these factors when choosing the number of partitions.
• What is the throughput you expect to achieve for the topic?
• What is the maximum throughput you expect to achieve when
consuming from a single partition?
• If you are sending messages to partitions based on keys,
adding partitions later can be very challenging, so calculate
throughput based on your expected future usage, not the current
usage.
• Consider the number of partitions you will place on each
broker and available diskspace and network bandwidth per
broker.
So if you want to be able to write and read 1 GB/sec from a topic, and each consumer can only process 50 MB/s, then you need at least 20 partitions. This way, you can have 20 consumers reading from the topic and achieve 1 GB/sec.
Also,
Regarding the fetch.max.bytes, I am sure you have already had a glance on this one Kafka fetch max bytes doesn't work as expected.

How to evenly distribute messages over partitions in Kafka?

Setting the stage..
Here's a diagram to help explain my problem better:
Now, keep in mind the following points:
I have a producer sending messages to 8 partitions of My topic.
On the other side, I have 8 consumers, one for each partition.
The legacy system has limited resources, and can process at most 8 simultaneous requests.
To make sure I don't overwhelm the legacy system, a consumer will only send one request at a time. Any new message will wait for the current message to finish processing.
Explaining the problem..
Since messages are blocked until the previous message is processed, I want to minimize the time a message will wait before it's processed. To do that I need messages to be distributed equally over the partitions. A massage must not be consumed by a busy consumer when another is free.
For example, if 8 messages are produced simultaneously, each message should be sent to one partition. Therefore, each message will be consumed by one consumer, ensuring the messages are processed concurrently without any lag.
What I tried so far
Since the partitions are assigned correctly to the consumers, I had to assume the producer wasn't evenly delivering messages to the partitions. Which turned out to be the case. Here's what I tried so far to resolve the issue...
Using null keys
The most intuitive solution was to produce records without keys which will basically make the DefaultPartitioner behave like the RoundRobinPartitioner. unfortunately, this solution did not work.
Using null keys and batch.size=0
Since using null keys didn't work, It made sense that messages were being sent in batches breaking the even distribution. Setting the batch size to 0 should've caused the producer to send messages one by one. That didn't work either.
Using RoundRobinPartitioner
This one was weird. The RoundRobinPartitioner distributed messages evenly, but it only used 4 out of the 8 partitions.
Using RoundRobinPartitioner and batch.size=0
This made no difference.
Finally, my question:
I need the producer to send messages in Round Robin fashion one by one without batching. How can I do that?
TL;DR
I need the producer to send messages in Round Robin fashion without batching. How can I do that?

Streaming audio streams trough MQ (scalability)

my question is rather specific, so I will be ok with a general answer, which will point me in the right direction.
Description of the problem:
I want to deliver specific task data from multiple producers to a particular consumer working on the task (both are docker containers run in k8s). The relation is many to many - any producer can create a data packet for any consumer. Each consumer is processing ~10 streams of data at any given moment, while each data stream consists of 100 of 160b messages per second (from different producers).
Current solution:
In our current solution, each producer has a cache of a task: (IP: PORT) pair values for consumers and uses UDP data packets to send the data directly. It is nicely scalable but rather messy in deployment.
Question:
Could this be realized in the form of a message queue of sorts (Kafka, Redis, rabbitMQ...)? E.g., having a channel for each task where producers send data while consumer - well consumes them? How many streams would be feasible to handle for the MQ (i know it would differ - suggest your best).
Edit: Would 1000 streams which equal 100 000 messages per second be feasible? (troughput for 1000 streams is 16 Mb/s)
Edit 2: Fixed packed size to 160b (typo)
Unless you need disk persistence, do not even look in message broker direction. You are just adding one problem to an other. Direct network code is a proper way to solve audio broadcast. Now if your code is messy and if you want a simplified programming model good alternative to sockets is a ZeroMQ library. This will give you all MessageBroker functionality for which you care: a) discrete messaging instead of streams, b) client discoverability; without going overboard with another software layer.
When it comes to "feasible": 100 000 messages per second with 160kb message is a lot of data and it comes to 1.6 Gb/sec even without any messaging protocol on top of it. In general Kafka shines at message throughput of small messages as it batches messages on many layers. Knowing this sustained performances of Kafka are usually constrained by disk speed, as Kafka is intentionally written this way (slowest component is disk). However your messages are very large and you need to both write and read messages at same time so I don't see it happen without large cluster installation as your problem is actual data throughput, and not number of messages.
Because you are data limited, even other classic MQ software like ActiveMQ, IBM MQ etc is actually able to cope very well with your situation. In general classic brokers are much more "chatty" than Kafka and are not able to hit message troughpout of Kafka when handling small messages. But as long as you are using large non-persistent messages (and proper broker configuration) you can expect decent performances in mb/sec from those too. Classic brokers will, with proper configuration, directly connect a socket of producer to a socket of a consumer without hitting a disk. In contrast Kafka will always persist to disk first. So they even have some latency pluses over Kafka.
However this direct socket-to-socket "optimisation" is just a full circle turn to the start of an this answer. Unless you need audio stream persistence, all you are doing with a broker-in-the-middle is finding an indirect way of binding producing sockets to consuming ones and then sending discrete messages over this connection. If that is all you need - ZeroMQ is made for this.
There is also messaging protocol called MQTT which may be something of interest to you if you choose to pursue a broker solution. As it is meant to be extremely scalable solution with low overhead.
A basic approach
As from Kafka perspective, each stream in your problem can map to one topic in Kafka and
therefore there is one producer-consumer pair per topic.
Con: If you have lots of streams, you will end up with lot of topics and IMO the solution can get messier here too as you are increasing the no. of topics.
An alternative approach
Alternatively, the best way is to map multiple streams to one topic where each stream is separated by a key (like you use IP:Port combination) and then have multiple consumers each subscribing to a specific set of partition(s) as determined by the key. Partitions are the point of scalability in Kafka.
Con: Though you can increase the no. of partitions, you cannot decrease them.
Type of data matters
If your streams are heterogeneous, in the sense that it would not be apt for all of them to share a common topic, you can create more topics.
Usually, topics are determined by the data they host and/or what their consumers do with the data in the topic. If all of your consumers do the same thing i.e. have the same processing logic, it is reasonable to go for one topic with multiple partitions.
Some points to consider:
Unlike in your current solution (I suppose), once the message is received, it doesn't get lost once it is received and processed, rather it continues to stay in the topic till the configured retention period.
Take proper care in determining the keying strategy i.e. which messages land in which partitions. As said, earlier, if all of your consumers do the same thing, all of them can be in a consumer group to share the workload.
Consumers belonging to the same group do a common task and will subscribe to a set of partitions determined by the partition assignor. Each consumer will then get a set of keys in other words, set of streams or as per your current solution, a set of one or more IP:Port pairs.

Handling catastrophic failover in Kafka

Let's imaging a simple message processing pipeline, like on the image below:
A group of consumers listens to a topic, picks messages one by one, does some sort of processing and sends them over to the next topic.
Some messages crash the consumer or make it stuck forever (so then a liveness probe kills the consumer after timeout).
In this case a consumer is not able to commit the offset, so the malicious message gets picked up by another consumer. And also makes it crash.
Ideally we want to move the message to a dead letter topic after N such attempts.
This can be achieved by introducing a shared storage:
But this creates coupling between the services and introduces a Single Point of Failure (SPOF) which is the shared database.
I'm looking for ideas on how to work this around with stateless services.
If your context is correct with this approach (that's something you should judge, as I'm only trying to give a suggestion), please consider decoupling the consumption and the processing.
In your case, the consumer is stopped, not because it was not able to read from kafka, and/or the kafka broker wasn't able to provide messages, but because the processing of the message was too slow and/or unsuccesful.
The consumer, in fact, was correctly receiving the messages. It was the processing of them that made it be declared dead.
First of all, the KafkaConsumer javadoc block regarding this (just above the constructor summary). The second option is the one quoted here
2. Decouple Consumption and Processing
Another alternative is to have one or more consumer threads that do
all data consumption and hands off ConsumerRecords instances to a
blocking queue consumed by a pool of processor threads that actually
handle the record processing. This option likewise has pros and cons:
PRO: This option allows independently scaling the number of consumers
and processors. This makes it possible to have a single consumer that
feeds many processor threads, avoiding any limitation on partitions.
CON: Guaranteeing order across the processors requires particular care
as the threads will execute independently an earlier chunk of data may
actually be processed after a later chunk of data just due to the luck
of thread execution timing. For processing that has no ordering
requirements this is not a problem.
CON: Manually committing the position becomes harder as it requires
that all threads co-ordinate to ensure that processing is complete for
that partition.**
Esentially, works like this. The consumer keeps reading and gives the responsibility of the processing and process-timeout management to the processor threads .
The error handling of the message processing would be responsibility of the processor threads as well. For example, if a timeout is thrown or an exception occurs, the processor will send the message to your defined "dead" queue, or whatever management of this you wish to perform, without involving the consumer. Regardless of the processor threads' success or fail, the consumer will continue its job and never be considered dead for not calling poll() in the specified timeout.
You should control the amount of messages the consumer retrieves in its poll call in order not to saturate the processors. Its a game regarding how fast the processors finish their job, how many messages the consumer retrieves (max.poll.records) at each iteration, and what's the specified timeout for the consumer.
Decoupled workflow
The first element to be quoted is the queue (with a limited size, which you should also manage in order not getting too filled - OOM).
This queue would be the link between consumer and processor threads, essentially a buffer that could dynamically get bigger or smaller depending on the specific word load at each time; It would manage overloads, something like a dam, or barrier, to find a similarity.
----->WORKERTHREAD1
KAFKA <------> CONSUMER ----> QUEUE -----|
----->WORKERTHREAD2
What you get is a second queue-lag mechanism:
1. Kafka Consumer LAG (the messages still to be read from the partition/topic)
2. Queue LAG (received messages still need to be processed)
--->WORKERTHREAD1
KAFKA <--(LAG)--> CONSUMER ----> QUEUE --(LAG)--|
--->WORKERTHREAD2
The queue could be some kind of synchronized queue, such a ConcurrentLinkedQueue. for example. Or you could manage yourself the synchronization with a customized queue.
Essentially, the duties would be divided, and the consumer is given the easiest one (as its the one that is most crucial).
Responsibilities:
Consumer
consume-->send to queue
Workers
read from queue|-->[manage timeout]
|==>PROCESS MESSAGE ==> send to topic
|-->[handle failed messages]
You should also manage if the processor threads die/deadlock; but usually those mechanisms are already implemented in most of ThreadPool variants.
I suggest the workers to share a unique KafkaProducer; The producer is thread safe and since the output topic would be the same for the group of consumers, this would also increase its performance. Also from the Kafka Producer javadoc:
The producer is thread safe and sharing a single producer instance
across threads will generally be faster than having multiple
instances.
In resume, each consumer thread feeds n processor threads. Some variants could be:
- 1 consumer - 1 worker (no processing paralellization, just division of duties)
- 1 consumer - 2 workers
- 1 consumer - 4 workers
- 2 consumers - 4 workers (2 for each)
- 2 consumers - 8 workers (4 for each)
...
Read carefully the pros and contras from this mechanism in the javadoc, and judge if this could be a solution to your specific case.
In my oppinion, there's a PRO that doesn't get reflected in the docs, which is the root of this answer/suggestion:
Consumption shouldn't be affected by processing. This approach avoids any consumer thread being considered dead due to a slow processing of the messages, and offers an extra "safety-window" thanks to the queue. I'm not saying that, at the point in which all processors fail for every message, or the queue hits maximum size, for example, the consumer would continue happily as if that didn't affect it; It will in fact be stopped by processing, but much, much later and due to bigger reasons that couldn't be avoided. This approach offers some extra time, or extra shield, for that to happen. Just like a dam can fail if it can't hold any more water.
Well, hope you take this as a suggestion, and may it be helpful somehow. It may avoid most of the dead consumer issues you're having. If well managed, it's a good approach for 24/7 real time data workflow.

What atomicity guarantees - if any - does Kafka have regarding batch writes?

We're now moving one of our services from pushing data through legacy communication tech to Apache Kafka.
The current logic is to send a message to IBM MQ and retry if errors occur. I want to repeat that, but I don't have any idea about what guarantees the broker provide in that scenario.
Let's say I send 100 messages in a batch via producer via Java client library. Assuming it reaches the cluster, is there a possibility only part of it be accepted (e.g. a disk is full, or some partitions I touch in my write are under-replicated)? Can I detect that problem from my producer and retry only those messages that weren't accepted?
I searched for kafka atomicity guarantee but came up empty, may be there's a well-known term for it
When you say you send 100 messages in one batch, you mean, you want to control this number of messages or be ok letting the producer batch a certain amount of messages and then send the batch ?
Because not sure you can control the number of produced messages in one producer batch, the API will queue them and batch them for you, but without guarantee of batch them all together ( I'll check that though).
If you're ok with letting the API batch a certain amount of messages for you, here is some clues about how they are acknowledged.
When dealing with producer, Kafka comes with some kind of reliability regarding writes ( also "batch writes")
As stated in this slideshare post :
https://www.slideshare.net/miguno/apache-kafka-08-basic-training-verisign (83)
The original list of messages is partitioned (randomly if the default partitioner is used) based on their destination partitions/topics, i.e. split into smaller batches.
Each post-split batch is sent to the respective leader broker/ISR (the individual send()’s happen sequentially), and each is acked by its respective leader broker according to request.required.acks
So regarding atomicity.. Not sure the whole batch will be seen as atomic regarding the above behavior. Maybe you can assure to send your batch of message using the same key for each message as they will go to the same partition, and thus maybe become atomic
If you need more clarity about acknowlegment rules when producing, here how it works As stated here https://docs.confluent.io/current/clients/producer.html :
You can control the durability of messages written to Kafka through the acks setting.
The default value of "1" requires an explicit acknowledgement from the partition leader that the write succeeded.
The strongest guarantee that Kafka provides is with "acks=all", which guarantees that not only did the partition leader accept the write, but it was successfully replicated to all of the in-sync replicas.
You can also look around producer enable.idempotence behavior if you aim having no duplicates while producing.
Yannick