Methods for searching for people with similar purchasing habits in big data with a given person as the base - pyspark

I'm looking at finding people with similar purchasing behaviors with a given person or group as a starting point for a market research problem.
I'm going to use vectors and represent every person and their habits as a vector and then compare these vectors to return the base person or group. I'd probably use Faiss. I believe KNN can be used too.
But I'm looking to see is if I can use other methods such as clustering methods like k-means clustering for such a question, and with the presence of a given person or group as the base. I thought the only way clustering algs would work is to first cluster the data, then return the group that the 'base person or group' falls into. However, this would be costly and probably not very accurate. But potentially this technique can be used to reduce the search space.
So, do you know of any other ways? (non-Machine Learning or Information Retrieval methods would be welcomed too :) )

Related

Clustering Category Purchases in Customer Data

I am attempting to cluster a group of customers based on spend, order frequency, order breadth and what % of purchases they make in each category (there are around 20).
It will probably be a simple answer but I cannot figure out whether I should standardize (subtract mean and divide by sd) the % category buy columns or not. When I dont standardize I can get around 90% of the variance explained in 4-5 principal components (using SVD), but when I standardize each column I only get around 40% for the same number of principal components. My worry is that because each column is related, I am removing the relationship by standardizing. At the same time I am worried that not standardizing will cause issues with the other variables in the data that I have standardized.
I would assume if others tried clustering in this way they would face a similar issue but I cant seem to find one so it might be that I just dont understand the situation. Thanks for any clarification in advance!
Chris,
Percentage scale has a well defined range and nice properties.
By heuristically scaling these features you usually make things worse.

What is a suitable data mining model to find the best Hospital?

I have a Hospital ratings data-set and need to find best hospital when I just broke my leg. So what is the best data mining model that I can use and how to
find which model is better?
https://www.kaggle.com/center-for-medicare-and-medicaid/hospital-ratings#=
This is really up to you to design. You need to attach a weight to each of the variables you have, which is how you attach importance to that variable.
Is the hospital location a limiting factor? Maybe you can only hobble 5 miles on your broken leg, or maybe you're a baller and can book your private jet to Hollywood.
If you don't have a way to connect with an API to determine distance based on your location and the hospital address, then you'll just have to throw out location altogether.
If you just broke your leg, timeliness of care is probably pretty important. But if you want to get a boob job, then you probably don't mind waiting a month or two as long as it's done really well.
In this case, effectiveness of care is probably the most valuable variable. I would start with just that, then work on adding in more variables and refining your answer. What happens if two hospitals have equally good effectiveness? Then patient satisfaction might be the next most important, etc.

Unsupervised Anomaly Detection with Mixed Numeric and Categorical Data

I am working on a data analysis project over the summer. The main goal is to use some access logging data in the hospital about user accessing patient information and try to detect abnormal accessing behaviors. Several attributes have been chosen to characterize a user (e.g. employee role, department, zip-code) and a patient (e.g. age, sex, zip-code). There are about 13 - 15 variables under consideration.
I was using R before and now I am using Python. I am able to use either depending on any suitable tools/libraries you guys suggest.
Before I ask any question, I do want to mention that a lot of the data fields have undergone an anonymization process when handed to me, as required in the healthcare industry for the protection of personal information. Specifically, a lot of VARCHAR values are turned into random integer values, only maintaining referential integrity across the dataset.
Questions:
An exact definition of an outlier was not given (it's defined based on the behavior of most of the data, if there's a general behavior) and there's no labeled training set telling me which rows of the dataset are considered abnormal. I believe the project belongs to the area of unsupervised learning so I was looking into clustering.
Since the data is mixed (numeric and categorical), I am not sure how would clustering work with this type of data.
I've read that one could expand the categorical data and let each category in a variable to be either 0 or 1 in order to do the clustering, but then how would R/Python handle such high dimensional data for me? (simply expanding employer role would bring in ~100 more variables)
How would the result of clustering be interpreted?
Using clustering algorithm, wouldn't the potential "outliers" be grouped into clusters as well? And how am I suppose to detect them?
Also, with categorical data involved, I am not sure how "distance between points" is defined any more and does the proximity of data points indicate similar behaviors? Does expanding each category into a dummy column with true/false values help? What's the distance then?
Faced with the challenges of cluster analysis, I also started to try slicing the data up and just look at two variables at a time. For example, I would look at the age range of patients accessed by a certain employee role, and I use the quartiles and inter-quartile range to define outliers. For categorical variables, for instance, employee role and types of events being triggered, I would just look at the frequency of each event being triggered.
Can someone explain to me the problem of using quartiles with data that's not normally distributed? And what would be the remedy of this?
And in the end, which of the two approaches (or some other approaches) would you suggest? And what's the best way to use such an approach?
Thanks a lot.
You can decide upon a similarity measure for mixed data (e.g. Gower distance).
Then you can use any of the distance-based outlier detection methods.
You can use k-prototypes algorithm for mixed numeric and categorical attributes.
Here you can find a python implementation.

Doubts about clustering methods for tweets

I'm fairly new to clustering and related topics so please forgive my questions.
I'm trying to get introduced into this area by doing some tests, and as a first experiment I'd like to create clusters on tweets based on content similarity. The basic idea for the experiment would be storing tweets on a database and periodically calculate the clustering (ie. using a cron job). Please note that the database would obtain new tweets from time to time.
Being ignorant in this field, my idea (probably naive) would be to do something like this:
1. For each new tweet in the db, extract N-grams (N=3 for example) into a set
2. Perform Jaccard similarity and compare with each of the existing clusters. If result > threshold then it would be assigned to that cluster
3. Once finished I'd get M clusters containing similar tweets
Now I see some problems with this basic approach. Let's put aside computational cost, how would the comparison between a tweet and a cluster be done? Assuming I have a tweet Tn and a cluster C1 containing T1, T4, T10 which one should I compare it to? Given that we're talking about similarity, it could well happen that sim(Tn,T1) > threshold but sim(Tn,T4) < threshold. My gut feeling tells me that something like an average should be used for the cluster, in order to avoid this problem.
Also, it could happen that sim(Tn, C1) and sim(Tn, C2) are both > threshold but similarity with C1 would be higher. In that case Tn should go to C1. This could be done brute force as well to assign the tweet to the cluster with maximum similarity.
And last of all, it's the computational issue. I've been reading a bit about minhash and it seems to be the answer to this problem, although I need to do some more research on it.
Anyway, my main question would be: could someone with experience in the area recommend me which approach should I aim to? I read some mentions about LSA and other methods, but trying to cope with everything is getting a bit overwhelming, so I'd appreciate some guiding.
From what I'm reading a tool for this would be hierarchical clustering, as it would allow regrouping of clusters whenever new data enters. Is this correct?
Please note that I'm not looking for any complicated case. My use case idea would be being able to cluster similar tweets into groups without any previous information. For example, tweets from Foursquare ("I'm checking in ..." which are similar to each other would be one case, or "My klout score is ..."). Also note that I'd like this to be language independent, so I'm not interested in having to deal with specific language issues.
It looks like to me that you are trying to address two different problems in one, i.e. "syntactic" and "semantic" clustering. They are quite different problems, expecially if you are in the realm of short-text analysis (and Twitter is the king of short-text analysis, of course).
"Syntactic" clustering means aggregating tweets that come, most likely, from the same source. Your example of Foursquare fits perfectly, but it is also common for retweets, people sharing online newspaper articles or blog posts, and many other cases. For this type of problem, using a N-gram model is almost mandatory, as you said (my experience suggests that N=2 is good for tweets, since you can find significant tweets that have as low as 3-4 features). Normalization is also an important factor here, removing RT tag, mentions, hashtags might help.
"Semantic" clustering means aggregating tweets that share the same topic. This is a much more difficult problem, and it won't likely work if you try to aggregate random sample of tweets, due to the fact that they, usually, carry too little information. These techniques might work, though, if you restrict your domain to a specific subset of tweets (i.e. the one matching a keyword, or an hashtag). LSA could be useful here, while it is useless for syntactic clusters.
Based on your observation, I think what you want is syntactic clustering. Your biggest issue, though, is the fact that you need online clustering, and not static clustering. The classical clustering algorithms that would work well in the static case (like hierarchical clustering, or union find) aren't really suited for online clustering , unless you redo the clustering from scratch every time a new tweet gets added to your database. "Averaging" the clusters to add new elements isn't a great solution according to my experience, because you need to retain all the information of every cluster member to update the "average" every time new data gets in. Also, algorithms like hierarchical clustering and union find work well because they can join pre-existant clusters if a link of similarity is found between them, and they don't simply assign a new element to the "closest" cluster, which is what you suggested to do in your post.
Algorithms like MinHash (or SimHash) are indeed more suited to online clustering, because they support the idea of "querying" for similar documents. MinHash is essentially a way to obtain pairs of documents that exceed a certain threshold of similarity (in particular, MinHash can be considered an estimator of Jaccard similarity) without having to rely on a quadratic algorithm like pairwise comparison (it is, in fact, O(nlog(n)) in time). It is, though, quadratic in space, therefore a memory-only implementation of MinHash is useful for small collections only (say 10000 tweets). In your case, though, it can be useful to save "sketches" (i.e., the set of hashes you obtain by min-hashing a tweet) of your tweets in a database to form an "index", and query the new ones against that index. You can then form a similarity graph, by adding edges between vertices (tweets) that matched the similarity query. The connected components of your graph will be your clusters.
This sounds a lot like canopy pre-clustering to me.
Essentially, each cluster is represented by the first object that started the cluster.
Objects within the outer radius join the cluster. Objects that are not within the inner radius of at least one cluster start a new cluster. This way, you get an overlapping (non-disjoint!) quantization of your dataset. Since this can drastically reduce the data size, it can be used to speed up various algorithms.
However don't expect useful results from clustering tweets. Tweet data is just to much noise. Most tweets have just a few words, too little to define a good similarity. On the other hand, you have the various retweets that are near duplicates - but trivial to detect.
So what would be a good cluster of tweets? Can this n-gram similarity actually capture this?

Clustering or classification?

I am stuck between a decision to apply classification or clustering on the data set I got. The more I think about it, the more I get confused. Heres what I am confronted with.
I have got news documents (around 3000 and continuously increasing) containing news about companies, investment, stocks, economy, quartly income etc. My goal is to have the news sorted in such a way that I know which news correspond to which company. e.g for the news item "Apple launches new iphone", I need to associate the company Apple with it. A particular news item/document only contains 'title' and 'description' so I have to analyze the text in order to find out which company the news referes to. It could be multiple companies too.
To solve this, I turned to Mahout.
I started with clustering. I was hoping to get 'Apple', 'Google', 'Intel' etc as top terms in my clusters and from there I would know the news in a cluster corresponds to its cluster label, but things were a bit different. I got 'investment', 'stocks', 'correspondence', 'green energy', 'terminal', 'shares', 'street', 'olympics' and lots of other terms as the top ones (which makes sense as clustering algos' look for common terms). Although there were some 'Apple' clusters but the news items associated with it were very few.I thought may be clustering is not for this kind of problem as many of the company news goes into more general clusters(investment, profit) instead of the specific company cluster(Apple).
I started reading about classification which requires training data, The name was convincing too as I actually want to 'classify' my news items into 'company names'. As I read on, I got an impression that the name classification is a bit deceiving and the technique is used more for prediction purposes as compared to classification. The other confusions that I got was how can I prepare training data for news documents? lets assume I have a list of companies that I am interested in. I write a program to produce training data for the classifier. the program will see if the news title or description contains the company name 'Apple' then its a news story about apple. Is this how I can prepare training data?(off course I read that training data is actually a set of predictors and target variables). If so, then why should I use mahout classification in the first place? I should ditch mahout and instead use this little program that I wrote for training data(which actually does the classification)
You can see how confused I am about how to address this issue. Another thing that concerns me is that if its possible to make a system this intelligent, that if the news says 'iphone sales at a record high' without using the word 'Apple', the system can classify it as a news related to apple?
Thank you in advance for pointing me in the right direction.
Copying my reply from the mailing list:
Classifiers are supervised learning algorithms, so you need to provide
a bunch of examples of positive and negative classes. In your example,
it would be fine to label a bunch of articles as "about Apple" or not,
then use feature vectors derived from TF-IDF as input, with these
labels, to train a classifier that can tell when an article is "about
Apple".
I don't think it will quite work to automatically generate the
training set by labeling according to the simple rule, that it is
about Apple if 'Apple' is in the title. Well, if you do that, then
there is no point in training a classifier. You can make a trivial
classifier that achieves 100% accuracy on your test set by just
checking if 'Apple' is in the title! Yes, you are right, this gains
you nothing.
Clearly you want to learn something subtler from the classifier, so
that an article titled "Apple juice shown to reduce risk of dementia"
isn't classified as about the company. You'd really need to feed it
hand-classified documents.
That's the bad news, but, sure you can certainly train N classifiers
for N topics this way.
Classifiers put items into a class or not. They are not the same as
regression techniques which predict a continuous value for an input.
They're related but distinct.
Clustering has the advantage of being unsupervised. You don't need
labels. However the resulting clusters are not guaranteed to match up
to your notion of article topics. You may see a cluster that has a lot
of Apple articles, some about the iPod, but also some about Samsung
and laptops in general. I don't think this is the best tool for your
problem.
First of all, you don't need Mahout. 3000 documents is close to nothing. Revisit Mahout when you hit a million. I've been processing 100.000 images on a single computer, so you really can skip the overhead of Mahout for now.
What you are trying to do sounds like classification to me. Because you have predefined classes.
A clustering algorithm is unsupervised. It will (unless you overfit the parameters) likely break Apple into "iPad/iPhone" and "Macbook". Or on the other hand, it may merge Apple and Google, as they are closely related (much more than, say, Apple and Ford).
Yes, you need training data, that reflects the structure that you want to measure. There is other structure (e.g. iPhones being not the same as Macbooks, and Google, Facebook and Apple being more similar companies than Kellogs, Ford and Apple). If you want a company level of structure, you need training data at this level of detail.