Related
Kindly please help me with the problem as I need to use nlinfit function for fitting unknown parameters but it is showing some error. Although yesterday I was getting some values for parameters to be fitted but now if I am running it is having some issue for the function output to be used in fitted with NaN answer for last iteration only. X data is a concatenated matrix of three columns as independent variable and yk is dependent variable, taua is a matrix of initial guesses of number of parameters to be fitted.
function [yk]=activity_coefficientE(taua,x)
T=523;
alpha12=0.3; alpha13=0.3; alpha21=0.3; alpha23=0.3; alpha31=0.3; alpha32=0.3;
alpha18=0.2; alpha81=0.2; alpha28=0.2; alpha82=0.2; alpha38=0.2; alpha83=0.3;
alpha19=0.2; alpha91=0.2; alpha29=0.2; alpha92=0.2; alpha39=0.2; alpha93=0.2;
alpha110=0.2;alpha101=0.2;alpha210=0.2;alpha102=0.2;alpha310=0.2;alpha103=0.2;
alpha113=0.2;alpha131=0.2;alpha213=0.2;alpha132=0.2;alpha313=0.2;alpha133=0.2;
alpha114=0.2;alpha141=0.2;alpha214=0.2;alpha142=0.2;alpha314=0.2;alpha143=0.2;
alpha115=0.2;alpha151=0.2;alpha215=0.2;alpha152=0.2;alpha315=0.2;alpha153=0.2;
alpha117=0.2;alpha171=0.2;alpha217=0.2;alpha172=0.2;alpha317=0.2;alpha173=0.2;
alpha118=0.2;alpha181=0.2;alpha218=0.2;alpha182=0.2;alpha318=0.2;alpha183=0.2;
alpha810=0.2;alpha915=0.2;alpha1314=0.2;alpha108=0.2;alpha159=0.2;alpha1413=0.2;
alpha1718=0.2;alpha1817=0.2;
tau12=0; tau13=0; tau21=0; tau23=0; tau31=0; tau32=0;
%taua=randi([-5,5],1,112)
tau18=taua(1)+taua(57)/T;
tau81=taua(2)+taua(58)/T;
tau28=taua(3)+taua(59)/T;
tau82=taua(4)+taua(60)/T;
tau38=taua(5)+taua(61)/T;
tau83=taua(6)+taua(62)/T;
tau19=taua(7)+taua(63)/T;
tau91=taua(8)+taua(64)/T;
tau29=taua(9)+taua(65)/T;
tau92=taua(10)+taua(66)/T;
tau39=taua(11)+taua(67)/T;
tau93=taua(12)+taua(68)/T;
tau110=taua(13)+taua(69)/T;
tau101=taua(14)+taua(70)/T;
tau210=taua(15)+taua(71)/T;
tau102=taua(16)+taua(72)/T;
tau310=taua(17)+taua(73)/T;
tau103=taua(18)+taua(74)/T;
tau113=taua(19)+taua(75)/T;
tau131=taua(20)+taua(76)/T;
tau213=taua(21)+taua(77)/T;
tau132=taua(22)+taua(78)/T;
tau313=taua(23)+taua(79)/T;
tau133=taua(24)+taua(80)/T;
tau114=taua(25)+taua(81)/T;
tau141=taua(26)+taua(82)/T;
tau214=taua(27)+taua(83)/T;
tau142=taua(28)+taua(84)/T;
tau314=taua(29)+taua(85)/T;
tau143=taua(30)+taua(86)/T;
tau115=taua(31)+taua(87)/T;
tau151=taua(32)+taua(88)/T;
tau215=taua(33)+taua(89)/T;
tau152=taua(34)+taua(90)/T;
tau315=taua(35)+taua(91)/T;
tau153=taua(36)+taua(92)/T;
tau117=taua(37)+taua(93)/T;
tau171=taua(38)+taua(94)/T;
tau217=taua(39)+taua(95)/T;
tau172=taua(40)+taua(96)/T;
tau317=taua(41)+taua(97)/T;
tau173=taua(42)+taua(98)/T;
tau118=taua(43)+taua(99)/T;
tau181=taua(44)+taua(100)/T;
tau218=taua(45)+taua(101)/T;
tau182=taua(46)+taua(102)/T;
tau318=taua(47)+taua(103)/T;
tau183=taua(48)+taua(104)/T;
tau810=taua(49)+taua(105)/T;
tau108=taua(50)+taua(106)/T;
tau915=taua(51)+taua(107)/T;
tau159=taua(52)+taua(108)/T;
tau1314=taua(53)+taua(109)/T;
tau1413=taua(54)+taua(110)/T;
tau1718=taua(55)+taua(111)/T;
tau1817=taua(56)+taua(112)/T;
G12=exp(-(tau12*alpha12));
G21=exp(-(tau21*alpha21));
G13=exp(-(tau13*alpha13));
G31=exp(-(tau31*alpha31));
G23=exp(-(tau23*alpha23));
G32=exp(-(tau32*alpha32));
G18=exp(-(tau18*alpha18));
G81=exp(-(tau81*alpha81));
G28=exp(-(tau28*alpha28));
G82=exp(-(tau82*alpha82));
G38=exp(-(tau38*alpha83));
G83=exp(-(tau83*alpha83));
G19=exp(-(tau19*alpha19));
G91=exp(-(tau91*alpha91));
G29=exp(-(tau29*alpha29));
G92=exp(-(tau92*alpha92));
G39=exp(-(tau39*alpha39));
G93=exp(-(tau93*alpha93));
G110=exp(-(tau110*alpha110));
G101=exp(-(tau101*alpha101));
G210=exp(-(tau210*alpha210));
G102=exp(-(tau102*alpha102));
G310=exp(-(tau310*alpha310));
G103=exp(-(tau103*alpha103));
G113=exp(-(tau113*alpha113));
G131=exp(-(tau131*alpha131));
G213=exp(-(tau213*alpha213));
G132=exp(-(tau132*alpha132));
G313=exp(-(tau313*alpha313));
G133=exp(-(tau133*alpha133));
G114=exp(-(tau114*alpha114));
G141=exp(-(tau141*alpha141));
G214=exp(-(tau214*alpha214));
G142=exp(-(tau142*alpha142));
G314=exp(-(tau314*alpha314));
G143=exp(-(tau143*alpha143));
G115=exp(-(tau115*alpha115));
G151=exp(-(tau151*alpha151));
G215=exp(-(tau215*alpha215));
G152=exp(-(tau152*alpha152));
G315=exp(-(tau315*alpha315));
G153=exp(-(tau153*alpha153));
G117=exp(-(tau117*alpha117));
G171=exp(-(tau171*alpha171));
G217=exp(-(tau217*alpha217));
G172=exp(-(tau172*alpha172));
G317=exp(-(tau317*alpha317));
G173=exp(-(tau173*alpha173));
G118=exp(-(tau118*alpha118));
G181=exp(-(tau181*alpha181));
G218=exp(-(tau218*alpha218));
G182=exp(-(tau182*alpha182));
G318=exp(-(tau318*alpha318));
G183=exp(-(tau183*alpha183));
G810=exp(-(tau810*alpha810));
G108=exp(-(tau108*alpha108));
G915=exp(-(tau915*alpha915));
G159=exp(-(tau159*alpha159));
G1314=exp(-(tau1314*alpha1314));
G1413=exp(-(tau1413*alpha1413));
G1718=exp(-(tau1718*alpha1718));
G1817=exp(-(tau1817*alpha1817));
%calculating mole fractions of ionic species
x1=x(:,1);
x2=x(:,2);
x3=x(:,3);
%x1=[0.1577 0.1492 0.1462 0.1366 0.1299 0.1180 0.0863 0.0761 0.0550 ];
%x2=[0.8278 0.7945 0.7678 0.7450 0.6979 0.6309 0.4611 0.4114 0.2952 ];
%x3=[0.0145 0.0563 0.0860 0.1184 0.1722 0.2511 0.4526 0.5125 0.6498 ];
A=[0.0674243 0.0773881 0.0843400 0.0865343 0.0899223 0.0882858 0.0715087 0.0643867 0.0483658];
B=[0.0141081 0.0479814 0.0643151 0.0737477 0.0820756 0.0838701 0.0701576 0.0634457 0.0479639];
C=[0.0565665 0.0450072 0.0387724 0.0313828 0.02506094 0.0186280 0.0092734 0.0073438 0.0041595 ];
D=[0.0336447 0.0267694 0.0230611 0.0186659 0.0149058 0.0110795 0.0055157 0.0043679 0.0024739 ];
E=[0.0008148 0.0008756 0.00087131 0.0008794 0.0008711 0.0008441 0.0007384 0.0006997 0.0005980 ];
N=length(A);
x1n=zeros(N,1);x2n=zeros(N,1);x3n=zeros(N,1);
X1=zeros(N,1);X2=zeros(N,1);X3=zeros(N,1);X4=zeros(N,1);X5=zeros(N,1);X6=zeros(N,1);X7=zeros(N,1);
X12=zeros(N,1);X16=zeros(N,1);
for i=1:N
x1n(i)=(x1(i)-A(i)-D(i)-2*E(i)-C(i)+3*B(i))
x2n(i)=(x2(i)-A(i)-C(i)-D(i))
x3n(i)=(x3(i)-B(i))
X1(i)=(x1n(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X2(i)=(x2n(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X3(i)=(x3n(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X4(i)=(A(i)+D(i)+E(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X5(i)=(C(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X6(i)=(A(i)-B(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X7(i)=(B(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X12(i)=(E(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
X16(i)=(C(i)+D(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)))
end
yc4=X4./(X4+X5);
yc5=X5./(X4+X5);
yc6=X6./(X6+X7+X12+X16);
yc7=X7./(X6+X7+X12+X16);
yc12=X12./(X6+X7+X12+X16);
yc16=X16./(X6+X7+X12+X16);
alpha14=yc6.*alpha18+yc7.*alpha19+yc12.*alpha113+yc16.*alpha117;
%alpha41=alpha14;
alpha24=yc6.*alpha28+yc7.*alpha29+yc12.*alpha213+yc16.*alpha217;
%alpha42=alpha24;
alpha34=yc6.*alpha38+yc7.*alpha39+yc12.*alpha313+yc16.*alpha317;
%alpha43=alpha34;
alpha15=yc6.*alpha110+yc7.*alpha115+yc12.*alpha114+yc16.*alpha118;
%alpha51=alpha15;
alpha25=yc6.*alpha210+yc7.*alpha215+yc12.*alpha214+yc16.*alpha218;
%alpha52=alpha25;
alpha35=yc6.*alpha310+yc7.*alpha315+yc12.*alpha314+yc16.*alpha318;
%alpha53=alpha35;
alpha16=yc4.*alpha81+yc5.*alpha101;
%alpha61=alpha16;
alpha26=yc4.*alpha82+yc5.*alpha102;
%alpha62=alpha26;
alpha36=yc4.*alpha83+yc5.*alpha103;
%alpha63=alpha36;
alpha17=yc4.*alpha91+yc5.*alpha151;
%alpha71=alpha17;
alpha27=yc4.*alpha92+yc5.*alpha152;
%alpha72=alpha27;
alpha37=yc4.*alpha93+yc5.*alpha153;
%alpha73=alpha37;
alpha112=yc4.*alpha131+yc5.*alpha141;
%alpha121=alpha112;
alpha212=yc4.*alpha132+yc5.*alpha142;
%alpha122=alpha212;
alpha312=yc4.*alpha133+yc5.*alpha143;
%alpha123=alpha312;
alpha116=yc4.*alpha171+yc5.*alpha181;
%alpha161=alpha116;
alpha216=yc4.*alpha172+yc5.*alpha182;
%alpha162=alpha216;
alpha316=yc4.*alpha173+yc5.*alpha183;
%alpha163=alpha316;
alpha46=yc5.*alpha810;
%alpha64=alpha46;
alpha47=yc5.*alpha915;
%alpha74=alpha47;
alpha412=yc5.*alpha1314;
%alpha124=alpha412;
alpha416=yc5.*alpha1718;
%alpha164=alpha416;
alpha56=yc4.*alpha108;
%alpha65=alpha56;
alpha57=yc4.*alpha159;
%alpha75=alpha57;
alpha512=yc4.*alpha1413;
%alpha125=alpha512;
alpha516=yc4.*alpha1817;
%alpha165=alpha516;
G14=yc6.*G18+yc7.*G19+yc12.*G113+yc16.*G117;
%G41=G14;
G24=yc6.*G28+yc7.*G29+yc12.*G213+yc16.*G217;
%G42=G24;
G34=yc6.*G38+yc7.*G39+yc12.*G313+yc16.*G317;
%G43=G34;
G15=yc6.*G110+yc7.*G115+yc12.*G114+yc16.*G118;
%G51=G15;
G25=yc6.*G210+yc7.*G215+yc12.*G214+yc16.*G218;
%G52=G25;
G35=yc6.*G310+yc7.*G315+yc12.*G314+yc16.*G318;
%G53=G35;
G16=yc4.*G81+yc5.*G101;
%G61=G16;
G26=yc4.*G82+yc5.*G102;
%G62=G26;
G36=yc4.*G83+yc5.*G103;
%G63=G36;
G17=yc4.*G91+yc5.*G151;
%G71=G17;
G27=yc4.*G92+yc5.*G152;
%G72=G27;
G37=yc4.*G93+yc5.*G153;
%G73=G37;
G112=yc4.*G131+yc5.*G141;
%G121=G112;
G212=yc4.*G132+yc5.*G142;
%G122=G212;
G312=yc4.*G133+yc5.*G143;
%G123=G312;
G116=yc4.*G171+yc5.*G181;
%G161=G116;
G216=yc4.*G172+yc5.*G182;
%G162=G216;
G316=yc4.*G173+yc5.*G183;
%G163=G316;
G46=yc5.*G810;
%G64=G46;
G47=yc5.*G915;
%G74=G47;
G412=yc5.*G1314;
%G124=G412;
G416=yc5.*G1718;
%G164=G416;
G56=yc4.*G108;
%G65=G56;
G57=yc4.*G159;
%G75=G57;
G512=yc4.*G1413;
%G125=G512;
G516=yc4.*G1817;
%G165=G516;
tau14=-log(G14)./alpha14;
%tau41=tau14;
tau24=-log(G24)./alpha24;
%tau42=tau24;
tau34=-log(G34)./alpha34;
%tau43=tau34;
tau15=-log(G15)./alpha15;
%tau51=tau15;
tau25=-log(G25)./alpha25;
%tau52=tau25;
tau35=-log(G35)./alpha35;
%tau53=tau35;
tau16=-log(G16)./alpha16;
%tau61=tau16;
tau26=-log(G26)./alpha26;
%tau62=tau26;
tau36=-log(G36)./alpha36;
%tau63=tau36;
tau17=-log(G17)./alpha17;
%tau71=tau17;
tau27=-log(G27)./alpha27;
%tau72=tau27;
tau37=-log(G37)./alpha37;
%tau73=tau37;
tau112=-log(G112)./alpha112;
%tau121=tau112;
tau212=-log(G212)./alpha212;
%tau122=tau212;
tau312=-log(G312)./alpha312;
%tau123=tau312;
tau116=-log(G116)./alpha116;
%tau161=tau116;
tau216=-log(G216)./alpha216;
%tau162=tau216;
tau316=-log(G316)./alpha316;
%tau163=tau316;
tau46=-log(G46)./alpha46;
%tau64=tau46;
tau47=-log(G47)./alpha47;
%tau74=tau47;
tau412=-log(G412)./alpha412;
%tau124=tau412;
tau416=-log(G416)./alpha416;
%tau164=tau416;
tau56=-log(G56)./alpha56;
%tau65=tau56;
tau57=-log(G57)./alpha57;
%tau75=tau57;
tau512=-log(G512)./alpha512;
%tau125=tau512;
tau516=-log(G516)./alpha516;
%tau165=tau516;
ln_y1_1=G12.*X2.*tau12+ G31.*X3.*tau13+ G14.*X4.*tau14+G15.*X5.*tau15+G16.*X6.*tau16+G17.*X7.*tau17+G112.*X12.*tau112+G116.*X16.*tau116;
ln_y1_2=G12.*X2+ G13.*X3+ G14.*X4+G15.*X5+G16.*X6+G17.*X7+G112.*X12+G116.*X16;
ln_y2_1=G21.*X1.*tau12+ G32.*X3.*tau32+ G24.*X4.*tau24+G25.*X5.*tau25+G26.*X6.*tau26+G27.*X7.*tau27+G212.*X12.*tau212+G216.*X16.*tau216;
ln_y2_2=G12.*X1+ G23.*X3+G24.*X4+G25.*X5+G26.*X6+G27.*X7+G212.*X12+G216.*X16;
ln_y3_1=G13.*X1.*tau13+ G23.*X3.*tau23+ G34.*X4.*tau34+G35.*X5.*tau35+G36.*X6.*tau36+G37.*X7.*tau37+G312.*X12.*tau312+G316.*X16.*tau316;
ln_y3_2=G13.*X1+ G23.*X3+ G34.*X4+G35.*X5+G36.*X6+G37.*X7+G312.*X12+G316.*X16;
ln_y4_1=G14.*X1.*tau14+G24.*X2.*tau24+G34.*X3.*tau34+G46.*X6.*tau46+G47.*X7.*tau47+G412.*X12.*tau412+G416.*X16.*tau416;
ln_y4_2=G14.*X1+G24.*X2+G34.*X3+G46.*X6+G47.*X7+G412.*X12+G416.*X16;
ln_y5_1=G15.*X1.*tau15+G25.*X2.*tau25+G35.*X3.*tau35+G56.*X6.*tau56+G57.*X7.*tau57+G512.*X12.*tau512+G516.*X16.*tau516;
ln_y5_2=G15.*X1+G25.*X2+G35.*X3+G56.*X6+G57.*X7+G512.*X12+G516.*X16;
ln_y6_1=G16.*X1.*tau16+G26.*X2.*tau26+G36.*X3.*tau36+G46.*X4.*tau46+G56.*X5.*tau56;
ln_y6_2=G16.*X1+G26.*X2+G36.*X3+G46.*X4+G56.*X5;
ln_y7_1=G17.*X1.*tau17+G27.*X2.*tau27+G37.*X3.*tau37+G47.*X4.*tau47+G57.*X5.*tau57;
ln_y7_2=G17.*X1+G27.*X2+G37.*X3+G47.*X4+G57.*X5;
ln_y12_1=G112.*X1.*tau112+G212.*X2.*tau212+G312.*X3.*tau312+G412.*X4.*tau412+G512.*X5.*tau512;
ln_y12_2=G112.*X1+G212.*X2+G312.*X3+G412.*X4+G512.*X5;
ln_y16_1=G116.*X1.*tau116+G216.*X2.*tau216+G316.*X3.*tau316+G416.*X4.*tau416+G516.*X5.*tau516;
ln_y16_2=G116.*X1+G216.*X2+G316.*X3+G416.*X4+G516.*X5;
ln_y1_3=(((X2.*G12)./ln_y2_2).*(tau12-(ln_y2_1)./(ln_y2_2)))+(((X3.*G13)./ln_y3_2).*(tau13-(ln_y3_1)./(ln_y3_2)));
ln_y1_4=(((X6.*G16)./ln_y6_2).*(tau16- (ln_y6_1./ln_y6_2))) + (((X7.*G17)./ln_y7_2).*(tau17- (ln_y7_1./ln_y7_2)))+(((X12.*G12)./ln_y12_2).*(tau112- (ln_y12_1./ln_y12_2)))+(((X16.*G16)./ln_y16_2).*(tau116- (ln_y16_1./ln_y16_2)));
ln_y1_5=(((X4.*G14)./ln_y4_2).*(tau14- (ln_y4_1./ln_y4_2))) + (((X5.*G15)./ln_y5_2).*(tau15- (ln_y5_1./ln_y5_2)));
yk=exp((ln_y1_1./ln_y1_2) + ln_y1_3 + ln_y1_4+ ln_y1_5) % activity coefficient for H2O
end
........................................
Another function where above function to be called.....
% calling the function act_coeff to estimate the binary interaction parameters
for i=1:112
filename = 'EagelsDATA.xlsx'; %reading VLE data from excel file
Data = xlsread(filename);
x(:,1) = Data([10:15 17:19],16);
x(:,2) = Data([10:15 17:19],1);
x(:,3)= Data([10:15 17:19],2);
taua=(randi([-5,5],1,112));
yk=[0.0606 (values calculated from above function and will be used for fitting)
0.4327
0.6545
0.9417
1.2570
1.6881
1.9108
1.7777
1.3821]
% taua =[ -2 3 4 -3 -4 1 4 -2 4 -4 -1 4 5 -3 3 2 -5 3 -4
% 1 4 1 5 -1 -1 -3 2 -3 4 3 4 2 5 4 -2 4 3 -1
% 1 0 -5 -5 -5 -3 4 2 1 4 0 2 -3 -4 5 0 -3 2 5
% 1 0 5 1 -3 5 4 1 5 2 3 2 0 -5 -4 -2 1 -2 5
%-5 5 -2 -2 4 1 -1 3 -1 1 5 -1 0 -1 4 5 5 1 4
% 1 0 4 -4 4 0 -1 -2 -5 -3 -4 -5
% -5 0 -2 0 -5] (random values for which yk was calculted from the command
taua= randi([-5,5],1,112))
try % try-catch used to continue the loop without stopping on encountering an error
[taua1]= nlinfit(x,yk,#activity_coefficientE,taua)
catch exception
continue
end
end
I am not able to attach excel sheet here so data from excel sheet is as:
x =[0.1577 0.1492 0.1462 0.1366 0.1299 0.1180 0.0863 0.0761 0.0550; column 1
0.8278 0.7945 0.7678 0.7450 0.6979 0.6309 0.4611 0.4114 0.2952 ; column 2
0.0145 0.0563 0.0860 0.1184 0.1722 0.2511 0.4526 0.5125 0.6498 ]; column 3
I found 3 major problems with what you did.
Problem #1 - errors
The reason you get the error is because your function "activity_coefficientE" can sometimes return NaN or inf values. My suggestion is to look for these values and set the value of "yk" to a large value so that the optimizer in "nlinfit" will stay away from coefficients that produce infinite or NaN values. This is the code at the bottom of the function so that you avoid crashes:
if any(~isfinite(yk))
yk = 10 * ones(size(yk));
end
Problem #2 - random initial guesses
The trouble with using random numbers for your initial conditions is that every time you run it you get a different answer, so sometimes it works and sometimes it doesn't. If you set the random number generator seed, you can get the same random numbers each time you run the script. If you change you seed, you can get a different set of random numbers. I shortened your main script to this, where I try 100 different random seeds (and store the results of each attempt) to see what answers result:
for i=1:100
rng(i)
taua = randi([-5,5],1,112);
taua1(i, :) = nlinfit(x,yk,#activity_coefficientE,taua);
end
Each row of "taua1" is a set of 111 coefficients.
Problem #3 - Trying to fit 9 points with 112 coefficients
Every time nlinfit is called, you get this warning:
Warning: Rank deficient
because you have more coefficients (112) that you are asking nlinfit to find than data points you are fitting (9). It's like trying to find the 2nd order equation that best fits 2 points, there are an infinite number of solutions. When curve fitting you should have more data points than coefficients to make sure you're not fitting noise. You need more data points in "yk" and "x" and/or fewer coefficients to fit. I've done a lot of curve fitting and I've never seen an equation with 112 coefficients, so I am thinking that you are not solving the problem correctly. Perhaps the 112 coefficients aren't really independent or there are 112 data points and 9 coefficients that you want to find.
For completeness, here is my edited version of the activity_coefficientE.m function that I created to work on this solution. In general, I never see Matlab code with this many variables with similar names. Much of this code could be greatly simplified by using vector operations. Most of my changes involve formatting, adding semicolons, and the checks for non-finite values at the end.
function yk=activity_coefficientE(taua,x)
T=523;
alpha12=0.3; alpha13=0.3; alpha21=0.3; alpha23=0.3; alpha31=0.3; alpha32=0.3;
alpha18=0.2; alpha81=0.2; alpha28=0.2; alpha82=0.2; alpha38=0.2; alpha83=0.3;
alpha19=0.2; alpha91=0.2; alpha29=0.2; alpha92=0.2; alpha39=0.2; alpha93=0.2;
alpha110=0.2;alpha101=0.2;alpha210=0.2;alpha102=0.2;alpha310=0.2;alpha103=0.2;
alpha113=0.2;alpha131=0.2;alpha213=0.2;alpha132=0.2;alpha313=0.2;alpha133=0.2;
alpha114=0.2;alpha141=0.2;alpha214=0.2;alpha142=0.2;alpha314=0.2;alpha143=0.2;
alpha115=0.2;alpha151=0.2;alpha215=0.2;alpha152=0.2;alpha315=0.2;alpha153=0.2;
alpha117=0.2;alpha171=0.2;alpha217=0.2;alpha172=0.2;alpha317=0.2;alpha173=0.2;
alpha118=0.2;alpha181=0.2;alpha218=0.2;alpha182=0.2;alpha318=0.2;alpha183=0.2;
alpha810=0.2;alpha915=0.2;alpha1314=0.2;alpha108=0.2;alpha159=0.2;alpha1413=0.2;
alpha1718=0.2;alpha1817=0.2;
tau12=0; tau13=0; tau21=0; tau23=0; tau31=0; tau32=0;
tau18=taua(1)+taua(57)/T;
tau81=taua(2)+taua(58)/T;
tau28=taua(3)+taua(59)/T;
tau82=taua(4)+taua(60)/T;
tau38=taua(5)+taua(61)/T;
tau83=taua(6)+taua(62)/T;
tau19=taua(7)+taua(63)/T;
tau91=taua(8)+taua(64)/T;
tau29=taua(9)+taua(65)/T;
tau92=taua(10)+taua(66)/T;
tau39=taua(11)+taua(67)/T;
tau93=taua(12)+taua(68)/T;
tau110=taua(13)+taua(69)/T;
tau101=taua(14)+taua(70)/T;
tau210=taua(15)+taua(71)/T;
tau102=taua(16)+taua(72)/T;
tau310=taua(17)+taua(73)/T;
tau103=taua(18)+taua(74)/T;
tau113=taua(19)+taua(75)/T;
tau131=taua(20)+taua(76)/T;
tau213=taua(21)+taua(77)/T;
tau132=taua(22)+taua(78)/T;
tau313=taua(23)+taua(79)/T;
tau133=taua(24)+taua(80)/T;
tau114=taua(25)+taua(81)/T;
tau141=taua(26)+taua(82)/T;
tau214=taua(27)+taua(83)/T;
tau142=taua(28)+taua(84)/T;
tau314=taua(29)+taua(85)/T;
tau143=taua(30)+taua(86)/T;
tau115=taua(31)+taua(87)/T;
tau151=taua(32)+taua(88)/T;
tau215=taua(33)+taua(89)/T;
tau152=taua(34)+taua(90)/T;
tau315=taua(35)+taua(91)/T;
tau153=taua(36)+taua(92)/T;
tau117=taua(37)+taua(93)/T;
tau171=taua(38)+taua(94)/T;
tau217=taua(39)+taua(95)/T;
tau172=taua(40)+taua(96)/T;
tau317=taua(41)+taua(97)/T;
tau173=taua(42)+taua(98)/T;
tau118=taua(43)+taua(99)/T;
tau181=taua(44)+taua(100)/T;
tau218=taua(45)+taua(101)/T;
tau182=taua(46)+taua(102)/T;
tau318=taua(47)+taua(103)/T;
tau183=taua(48)+taua(104)/T;
tau810=taua(49)+taua(105)/T;
tau108=taua(50)+taua(106)/T;
tau915=taua(51)+taua(107)/T;
tau159=taua(52)+taua(108)/T;
tau1314=taua(53)+taua(109)/T;
tau1413=taua(54)+taua(110)/T;
tau1718=taua(55)+taua(111)/T;
tau1817=taua(56)+taua(112)/T;
G12=exp(-(tau12*alpha12));
G21=exp(-(tau21*alpha21));
G13=exp(-(tau13*alpha13));
G31=exp(-(tau31*alpha31));
G23=exp(-(tau23*alpha23));
G32=exp(-(tau32*alpha32));
G18=exp(-(tau18*alpha18));
G81=exp(-(tau81*alpha81));
G28=exp(-(tau28*alpha28));
G82=exp(-(tau82*alpha82));
G38=exp(-(tau38*alpha83));
G83=exp(-(tau83*alpha83));
G19=exp(-(tau19*alpha19));
G91=exp(-(tau91*alpha91));
G29=exp(-(tau29*alpha29));
G92=exp(-(tau92*alpha92));
G39=exp(-(tau39*alpha39));
G93=exp(-(tau93*alpha93));
G110=exp(-(tau110*alpha110));
G101=exp(-(tau101*alpha101));
G210=exp(-(tau210*alpha210));
G102=exp(-(tau102*alpha102));
G310=exp(-(tau310*alpha310));
G103=exp(-(tau103*alpha103));
G113=exp(-(tau113*alpha113));
G131=exp(-(tau131*alpha131));
G213=exp(-(tau213*alpha213));
G132=exp(-(tau132*alpha132));
G313=exp(-(tau313*alpha313));
G133=exp(-(tau133*alpha133));
G114=exp(-(tau114*alpha114));
G141=exp(-(tau141*alpha141));
G214=exp(-(tau214*alpha214));
G142=exp(-(tau142*alpha142));
G314=exp(-(tau314*alpha314));
G143=exp(-(tau143*alpha143));
G115=exp(-(tau115*alpha115));
G151=exp(-(tau151*alpha151));
G215=exp(-(tau215*alpha215));
G152=exp(-(tau152*alpha152));
G315=exp(-(tau315*alpha315));
G153=exp(-(tau153*alpha153));
G117=exp(-(tau117*alpha117));
G171=exp(-(tau171*alpha171));
G217=exp(-(tau217*alpha217));
G172=exp(-(tau172*alpha172));
G317=exp(-(tau317*alpha317));
G173=exp(-(tau173*alpha173));
G118=exp(-(tau118*alpha118));
G181=exp(-(tau181*alpha181));
G218=exp(-(tau218*alpha218));
G182=exp(-(tau182*alpha182));
G318=exp(-(tau318*alpha318));
G183=exp(-(tau183*alpha183));
G810=exp(-(tau810*alpha810));
G108=exp(-(tau108*alpha108));
G915=exp(-(tau915*alpha915));
G159=exp(-(tau159*alpha159));
G1314=exp(-(tau1314*alpha1314));
G1413=exp(-(tau1413*alpha1413));
G1718=exp(-(tau1718*alpha1718));
G1817=exp(-(tau1817*alpha1817));
%calculating mole fractions of ionic species
x1=x(:,1);
x2=x(:,2);
x3=x(:,3);
A=[0.0674243 0.0773881 0.0843400 0.0865343 0.0899223 0.0882858 0.0715087 0.0643867 0.0483658];
B=[0.0141081 0.0479814 0.0643151 0.0737477 0.0820756 0.0838701 0.0701576 0.0634457 0.0479639];
C=[0.0565665 0.0450072 0.0387724 0.0313828 0.02506094 0.0186280 0.0092734 0.0073438 0.0041595 ];
D=[0.0336447 0.0267694 0.0230611 0.0186659 0.0149058 0.0110795 0.0055157 0.0043679 0.0024739 ];
E=[0.0008148 0.0008756 0.00087131 0.0008794 0.0008711 0.0008441 0.0007384 0.0006997 0.0005980 ];
N=length(A);
x1n=zeros(N,1);x2n=zeros(N,1);x3n=zeros(N,1);
X1=zeros(N,1);X2=zeros(N,1);X3=zeros(N,1);X4=zeros(N,1);X5=zeros(N,1);X6=zeros(N,1);X7=zeros(N,1);
X12=zeros(N,1);X16=zeros(N,1);
for i=1:N
x1n(i)=(x1(i)-A(i)-D(i)-2*E(i)-C(i)+3*B(i));
x2n(i)=(x2(i)-A(i)-C(i)-D(i));
x3n(i)=(x3(i)-B(i));
X1(i)=(x1n(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X2(i)=(x2n(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X3(i)=(x3n(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X4(i)=(A(i)+D(i)+E(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X5(i)=(C(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X6(i)=(A(i)-B(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X7(i)=(B(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X12(i)=(E(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
X16(i)=(C(i)+D(i)/(x1n(i)+x2n(i)+x3n(i)+2*A(i)+4*B(i)+2*C(i)+2*D(i)+2*E(i)));
end
yc4=X4./(X4+X5);
yc5=X5./(X4+X5);
yc6=X6./(X6+X7+X12+X16);
yc7=X7./(X6+X7+X12+X16);
yc12=X12./(X6+X7+X12+X16);
yc16=X16./(X6+X7+X12+X16);
alpha14=yc6.*alpha18+yc7.*alpha19+yc12.*alpha113+yc16.*alpha117;
alpha24=yc6.*alpha28+yc7.*alpha29+yc12.*alpha213+yc16.*alpha217;
alpha34=yc6.*alpha38+yc7.*alpha39+yc12.*alpha313+yc16.*alpha317;
alpha15=yc6.*alpha110+yc7.*alpha115+yc12.*alpha114+yc16.*alpha118;
alpha25=yc6.*alpha210+yc7.*alpha215+yc12.*alpha214+yc16.*alpha218;
alpha35=yc6.*alpha310+yc7.*alpha315+yc12.*alpha314+yc16.*alpha318;
alpha16=yc4.*alpha81+yc5.*alpha101;
alpha26=yc4.*alpha82+yc5.*alpha102;
alpha36=yc4.*alpha83+yc5.*alpha103;
alpha17=yc4.*alpha91+yc5.*alpha151;
alpha27=yc4.*alpha92+yc5.*alpha152;
alpha37=yc4.*alpha93+yc5.*alpha153;
alpha112=yc4.*alpha131+yc5.*alpha141;
alpha212=yc4.*alpha132+yc5.*alpha142;
alpha312=yc4.*alpha133+yc5.*alpha143;
alpha116=yc4.*alpha171+yc5.*alpha181;
alpha216=yc4.*alpha172+yc5.*alpha182;
alpha316=yc4.*alpha173+yc5.*alpha183;
alpha46=yc5.*alpha810;
alpha47=yc5.*alpha915;
alpha412=yc5.*alpha1314;
alpha416=yc5.*alpha1718;
alpha56=yc4.*alpha108;
alpha57=yc4.*alpha159;
alpha512=yc4.*alpha1413;
alpha516=yc4.*alpha1817;
G14=yc6.*G18+yc7.*G19+yc12.*G113+yc16.*G117;
G24=yc6.*G28+yc7.*G29+yc12.*G213+yc16.*G217;
G34=yc6.*G38+yc7.*G39+yc12.*G313+yc16.*G317;
G15=yc6.*G110+yc7.*G115+yc12.*G114+yc16.*G118;
G25=yc6.*G210+yc7.*G215+yc12.*G214+yc16.*G218;
G35=yc6.*G310+yc7.*G315+yc12.*G314+yc16.*G318;
G16=yc4.*G81+yc5.*G101;
G26=yc4.*G82+yc5.*G102;
G36=yc4.*G83+yc5.*G103;
G17=yc4.*G91+yc5.*G151;
G27=yc4.*G92+yc5.*G152;
G37=yc4.*G93+yc5.*G153;
G112=yc4.*G131+yc5.*G141;
G212=yc4.*G132+yc5.*G142;
G312=yc4.*G133+yc5.*G143;
G116=yc4.*G171+yc5.*G181;
G216=yc4.*G172+yc5.*G182;
G316=yc4.*G173+yc5.*G183;
G46=yc5.*G810;
G47=yc5.*G915;
G412=yc5.*G1314;
G416=yc5.*G1718;
G56=yc4.*G108;
G57=yc4.*G159;
G512=yc4.*G1413;
G516=yc4.*G1817;
tau14=-log(G14)./alpha14;
tau24=-log(G24)./alpha24;
tau34=-log(G34)./alpha34;
tau15=-log(G15)./alpha15;
tau25=-log(G25)./alpha25;
tau35=-log(G35)./alpha35;
tau16=-log(G16)./alpha16;
tau26=-log(G26)./alpha26;
tau36=-log(G36)./alpha36;
tau17=-log(G17)./alpha17;
tau27=-log(G27)./alpha27;
tau37=-log(G37)./alpha37;
tau112=-log(G112)./alpha112;
tau212=-log(G212)./alpha212;
tau312=-log(G312)./alpha312;
tau116=-log(G116)./alpha116;
tau216=-log(G216)./alpha216;
tau316=-log(G316)./alpha316;
tau46=-log(G46)./alpha46;
tau47=-log(G47)./alpha47;
tau412=-log(G412)./alpha412;
tau416=-log(G416)./alpha416;
tau56=-log(G56)./alpha56;
tau57=-log(G57)./alpha57;
tau512=-log(G512)./alpha512;
tau516=-log(G516)./alpha516;
ln_y1_1=G12.*X2.*tau12+ G31.*X3.*tau13+ G14.*X4.*tau14+G15.*X5.*tau15+G16.*X6.*tau16+G17.*X7.*tau17+G112.*X12.*tau112+G116.*X16.*tau116;
ln_y1_2=G12.*X2+ G13.*X3+ G14.*X4+G15.*X5+G16.*X6+G17.*X7+G112.*X12+G116.*X16;
ln_y2_1=G21.*X1.*tau12+ G32.*X3.*tau32+ G24.*X4.*tau24+G25.*X5.*tau25+G26.*X6.*tau26+G27.*X7.*tau27+G212.*X12.*tau212+G216.*X16.*tau216;
ln_y2_2=G12.*X1+ G23.*X3+G24.*X4+G25.*X5+G26.*X6+G27.*X7+G212.*X12+G216.*X16;
ln_y3_1=G13.*X1.*tau13+ G23.*X3.*tau23+ G34.*X4.*tau34+G35.*X5.*tau35+G36.*X6.*tau36+G37.*X7.*tau37+G312.*X12.*tau312+G316.*X16.*tau316;
ln_y3_2=G13.*X1+ G23.*X3+ G34.*X4+G35.*X5+G36.*X6+G37.*X7+G312.*X12+G316.*X16;
ln_y4_1=G14.*X1.*tau14+G24.*X2.*tau24+G34.*X3.*tau34+G46.*X6.*tau46+G47.*X7.*tau47+G412.*X12.*tau412+G416.*X16.*tau416;
ln_y4_2=G14.*X1+G24.*X2+G34.*X3+G46.*X6+G47.*X7+G412.*X12+G416.*X16;
ln_y5_1=G15.*X1.*tau15+G25.*X2.*tau25+G35.*X3.*tau35+G56.*X6.*tau56+G57.*X7.*tau57+G512.*X12.*tau512+G516.*X16.*tau516;
ln_y5_2=G15.*X1+G25.*X2+G35.*X3+G56.*X6+G57.*X7+G512.*X12+G516.*X16;
ln_y6_1=G16.*X1.*tau16+G26.*X2.*tau26+G36.*X3.*tau36+G46.*X4.*tau46+G56.*X5.*tau56;
ln_y6_2=G16.*X1+G26.*X2+G36.*X3+G46.*X4+G56.*X5;
ln_y7_1=G17.*X1.*tau17+G27.*X2.*tau27+G37.*X3.*tau37+G47.*X4.*tau47+G57.*X5.*tau57;
ln_y7_2=G17.*X1+G27.*X2+G37.*X3+G47.*X4+G57.*X5;
ln_y12_1=G112.*X1.*tau112+G212.*X2.*tau212+G312.*X3.*tau312+G412.*X4.*tau412+G512.*X5.*tau512;
ln_y12_2=G112.*X1+G212.*X2+G312.*X3+G412.*X4+G512.*X5;
ln_y16_1=G116.*X1.*tau116+G216.*X2.*tau216+G316.*X3.*tau316+G416.*X4.*tau416+G516.*X5.*tau516;
ln_y16_2=G116.*X1+G216.*X2+G316.*X3+G416.*X4+G516.*X5;
ln_y1_3=(((X2.*G12)./ln_y2_2).*(tau12-(ln_y2_1)./(ln_y2_2)))+(((X3.*G13)./ln_y3_2).*(tau13-(ln_y3_1)./(ln_y3_2)));
ln_y1_4=(((X6.*G16)./ln_y6_2).*(tau16- (ln_y6_1./ln_y6_2))) + (((X7.*G17)./ln_y7_2).*(tau17- (ln_y7_1./ln_y7_2)))+(((X12.*G12)./ln_y12_2).*(tau112- (ln_y12_1./ln_y12_2)))+(((X16.*G16)./ln_y16_2).*(tau116- (ln_y16_1./ln_y16_2)));
ln_y1_5=(((X4.*G14)./ln_y4_2).*(tau14- (ln_y4_1./ln_y4_2))) + (((X5.*G15)./ln_y5_2).*(tau15- (ln_y5_1./ln_y5_2)));
yk=exp((ln_y1_1./ln_y1_2) + ln_y1_3 + ln_y1_4+ ln_y1_5)'; % activity coefficient for H2O
if any(~isfinite(yk))
yk = 10 * ones(size(yk));
end
I have a text output from a program with a set format. I need to parse ~200 of them to extract an information. I tried in MATLAB with 'textscan' but did not work. Following is the input:
MOTIFS SUMMARY:
1) TTATAGCCGC (GCGGCTATAA) 1.986
2) AAACCGCCTC (GAGGCGGTTT) 1.865
DETAILED RESULTS:
1) TTATAGCCGC (GCGGCTATAA) 1.986
Matrix: MAT1 TTATAGCCGC
A 0.1249 0.177 0.7364 0.1189 0.7072 0.1149 0.09858 0.1096
C 0.0899 0.07379 0.1136 0.1298 0.08662 0.1293 0.7528 0.721
G 0.06828 0.1284 0.07195 0.1031 0.1352 0.6708 0.05556 0.0713
T 0.7169 0.6209 0.07802 0.6482 0.07096 0.08492 0.09305 0.09804
OCCURRENCES:
>GENE_1 1 TTATAGCCGC 1 561 +
>GENE_2 24 TAATAGCCGC 0.928699 762 -
>GENE_3 10 ATATAGCCGC 0.904905 185 -
>GENE_1 7 TTATAGCAGC 0.901785 726 +
**********
2) AAACCGCCTC (GAGGCGGTTT) 1.865
Matrix: MAT2 AAACCGCCTC
A 0.653 0.7401 0.7763 0.1323 0.09619 0.09134 0.07033 0.1383
C 0.1163 0.07075 0.09441 0.749 0.6347 0.1132 0.6559 0.6982
G 0.09136 0.09402 0.07385 0.04209 0.1799 0.7332 0.1241 0.07568
T 0.1393 0.09518 0.05541 0.07659 0.08921 0.06234 0.1497 0.08786
OCCURRENCES:
>GENE_1 21 AAACCGCCTC 1 963 +
>GENE_2 14 AAACGGCCTC 0.928198 212 +
>GENE_2 8 AAACCGTCTC 0.92009 170 +
>GENE_4 3 TAACCGCCTC 0.918883 370 +
**********
I am trying to count the unique() occurrence under each motif and add it to the MOTIF SUMMARY and a final average of them. My expected output is:
MOTIFS SUMMARY:
1) TTATAGCCGC (GCGGCTATAA) 1.986 3
2) AAACCGCCTC (GAGGCGGTTT) 1.865 3
AVERAGE OCCURRENCE: 3
For motif 1, unique occurrence is 3 (GENE_1, GENE_2, GENE_3). Similarly for motif 2, it is again 3 (GENE_1, GENE_2, GENE_4)
How can I use OCCURRENCES and ****** as blocks ? so that, I can regexp GENE_x to store it and count.
Kindly help.
Thanks,
AP
You better try to change the original text file so that it will be legal matlab m file code, then just use 'eval' function to run it .
Most of the job will be to find where to insert '=' and '[' ']' and '%' for ignore parts.
If all files are identical in format than it will be easy.
I was wondering if the procedure applied trying to download the sample rate was the appropriate as follows the instruction: y = downsample(x,n)
downsamp_rate = 40;
downsampled_data = downsample(X,downsamp_rate);
.. because my doubt relays in why the first column from both matrices is exactly the same (the original matrix and the sample donwloaded)maintaining the same data....
then the other data have already transformed to a lower sample rate.
Thank you so much!
Best!
edited: Sample data. I pasted the data but I can upload de .mat files.
Original data.
column 1 column 2 column 3
-0,593600000000000 -0,592699999999996 -0,591899999999995
2,42180000000000 2,41010000000000 2,40360000000000
1,78550000000000 1,79020000000000 1,79530000000000
-1,30590000000000 -1,31520000000000 -1,31530000000000
-0,707800000000003 -0,712699999999999 -0,727700000000003
-0,986500000000001 -0,996000000000002 -1,00460000000000
-0,989699999999999 -0,989699999999999 -0,989699999999999
1,23500000000000 1,22970000000000 1,21880000000000
0,122899999999998 0,127899999999997 0,128899999999998
0,938300000000003 0,937500000000002 0,936200000000004
0,248600000000004 0,248500000000002 0,248700000000002
-0,381499999999996 -0,393199999999999 -0,393699999999997
0,294099999999997 0,279299999999999 0,271299999999997
-0,223200000000001 -0,223699999999999 -0,227299999999997
0,0879999999999992 0,117300000000004 0,122500000000003
-0,167899999999999 -0,170999999999999 -0,174800000000003
-0,687499999999996 -0,697199999999998 -0,701600000000002
-0,681700000000002 -0,682200000000000 -0,683000000000000
1,19659999999999 1,19670000000000 1,19490000000000
-0,565500000000008 -0,565199999999999 -0,557400000000008
Downsampled data
column 1 column 2 column 3
-0,593600000000000 0,821900000000003 0,936300000000001
2,42180000000000 1,14610000000000 -0,255400000000000
1,78550000000000 2,86550000000000 3,66890000000000
-1,30590000000000 7,01950000000000 12,9564000000000
-0,707800000000003 3,05920000000000 0,852999999999998
-0,986500000000001 -0,372200000000000 -0,951000000000002
-0,989699999999999 -0,988000000000000 -1,21730000000000
1,23500000000000 5,79700000000000 3,40880000000000
0,122899999999998 5,32230000000000 5,19260000000000
0,938300000000003 4,88130000000000 7,55900000000000
0,248600000000004 4,79290000000000 2,96620000000000
-0,381499999999996 -0,400000000000000 0,641500000000000
0,294099999999997 -0,131400000000004 -1,20040000000000
-0,223200000000001 1,49610000000000 1,59030000000000
0,0879999999999992 0,418700000000000 -0,0114999999999976
-0,167899999999999 0,0149999999999983 -0,857500000000000
-0,687499999999996 -0,593100000000002 0,119700000000000
-0,681700000000002 -0,170000000000003 0,126799999999999
1,19659999999999 1,17670000000000 1,15780000000000
-0,565500000000008 8,89019999999999 6,58569999999999
A possible for your output is a periodic input signal with a period length of downsamp_rate-1. To give a short demonstration:
>> X=repmat(1:39,1,10);
>> downsampled_data = downsample(X,downsamp_rate);
>> downsampled_data
downsampled_data =
Columns 1 through 9
1 2 3 4 5 6 7 8 9
Column 10
10
Thus, take a look at your rows 40,41,42. I assume the first value is identical to your row 1,2,3
I have a complex data text file to parse, my first problem is some of the strings values are missing (such as row 5 column 4 shown in Data below, I tried using treatAsEmpty with 8 blank spaces but it didn't work it keeps moving the B from the 5th row over and not registering the rest of the row [To be honest I don't need that column, if you can show me how to ignore it that would solve this problem]).
textscan(fileName .'%4d %4d %4d %8s \t %1s %2d \b %2s %7s %5d %*[^\n]','delimiter','\r','treatAsEmpty',' ','EmptyValue',-Inf);
Data:
0439 0444 0441 S09E44SF A 13 ES 3.7E-04 10230
0727 0736 0732 S27W23SF A 29 ES 1.2E-03 10226
0937 0945 0942 S29W16SF A 23 ES 8.8E-04 10226
2000 2016 2008 S28W27SF C 23 ES 1.8E-03 10226
2134 2217 2153 B 27 ES 4.8E-02 10229
0032 0042 0037 S25W27SF C 45 ES 2.1E-03 10226
0142 0147 0145 S09E35SF C 14 ES 4.1E-04 10230
0536 0555 0541 S09E33SF C 16 ES 1.6E-03 10230
0214 0312 0252 N23W422F A 11 ES 2.3E-02 10223
My second problem is, the blank space that is row 6 and row 10. I need to get rows 1-5 in cells (1x9), rows 7-9 in cells (2x9), row 11 in cells (3x9), etc.
Does anyone know how to calculate a Mod b in Casio fx-991ES Calculator. Thanks
This calculator does not have any modulo function. However there is quite simple way how to compute modulo using display mode ab/c (instead of traditional d/c).
How to switch display mode to ab/c:
Go to settings (Shift + Mode).
Press arrow down (to view more settings).
Select ab/c (number 1).
Now do your calculation (in comp mode), like 50 / 3 and you will see 16 2/3, thus, mod is 2. Or try 54 / 7 which is 7 5/7 (mod is 5).
If you don't see any fraction then the mod is 0 like 50 / 5 = 10 (mod is 0).
The remainder fraction is shown in reduced form, so 60 / 8 will result in 7 1/2. Remainder is 1/2 which is 4/8 so mod is 4.
EDIT:
As #lawal correctly pointed out, this method is a little bit tricky for negative numbers because the sign of the result would be negative.
For example -121 / 26 = -4 17/26, thus, mod is -17 which is +9 in mod 26. Alternatively you can add the modulo base to the computation for negative numbers: -121 / 26 + 26 = 21 9/26 (mod is 9).
EDIT2: As #simpatico pointed out, this method will not work for numbers that are out of calculator's precision. If you want to compute say 200^5 mod 391 then some tricks from algebra are needed. For example, using rule
(A * B) mod C = ((A mod C) * B) mod C we can write:
200^5 mod 391 = (200^3 * 200^2) mod 391 = ((200^3 mod 391) * 200^2) mod 391 = 98
As far as I know, that calculator does not offer mod functions.
You can however computer it by hand in a fairly straightforward manner.
Ex.
(1)50 mod 3
(2)50/3 = 16.66666667
(3)16.66666667 - 16 = 0.66666667
(4)0.66666667 * 3 = 2
Therefore 50 mod 3 = 2
Things to Note:
On line 3, we got the "minus 16" by looking at the result from line (2) and ignoring everything after the decimal. The 3 in line (4) is the same 3 from line (1).
Hope that Helped.
Edit
As a result of some trials you may get x.99991 which you will then round up to the number x+1.
You need 10 ÷R 3 = 1
This will display both the reminder and the quoitent
÷R
There is a switch a^b/c
If you want to calculate
491 mod 12
then enter 491 press a^b/c then enter 12. Then you will get 40, 11, 12. Here the middle one will be the answer that is 11.
Similarly if you want to calculate 41 mod 12 then find 41 a^b/c 12. You will get 3, 5, 12 and the answer is 5 (the middle one). The mod is always the middle value.
You can calculate A mod B (for positive numbers) using this:
Pol( -Rec( 1/2πr , 2πr × A/B ) , Y ) ( πr - Y ) B
Then press [CALC], and enter your values for A and B, and any value for Y.
/ indicates using the fraction key, and r means radians ( [SHIFT] [Ans] [2] )
type normal division first and then type shift + S->d
Here's how I usually do it. For example, to calculate 1717 mod 2:
Take 1717 / 2. The answer is 858.5
Now take 858 and multiply it by the mod (2) to get 1716
Finally, subtract the original number (1717) minus the number you got from the previous step (1716) -- 1717-1716=1.
So 1717 mod 2 is 1.
To sum this up all you have to do is multiply the numbers before the decimal point with the mod then subtract it from the original number.
Note: Math error means a mod m = 0
It all falls back to the definition of modulus: It is the remainder, for example, 7 mod 3 = 1.
This because 7 = 3(2) + 1, in which 1 is the remainder.
To do this process on a simple calculator do the following:
Take the dividend (7) and divide by the divisor (3), note the answer and discard all the decimals -> example 7/3 = 2.3333333, only worry about the 2. Now multiply this number by the divisor (3) and subtract the resulting number from the original dividend.
so 2*3 = 6, and 7 - 6 = 1, thus 1 is 7mod3
Calculate x/y (your actual numbers here), and press a b/c key, which is 3rd one below Shift key.
Simply just divide the numbers, it gives yuh the decimal format and even the numerical format. using S<->D
For example: 11/3 gives you 3.666667 and 3 2/3 (Swap using S<->D).
Here the '2' from 2/3 is your mod value.
Similarly 18/6 gives you 14.833333 and 14 5/6 (Swap using S<->D).
Here the '5' from 5/6 is your mod value.