How to add Header to Avro Kafka Message - scala

We are using Avro Datum Reader and Datum Writer to build Kafka messages in Scala.
Code :
def AvroKafkaMessage(schemaPath : String, dataPath: String): Array[Byte] =
{
val schema = Source.fromFile(schemaPath).mkString
val schemaObj = new Schema.Parser().parse(schema)
val reader= new GenericDatumReader[GenericRecord](schemaObj)
val dataFile = new File(dataPath)
val dataFileReader = new DataFileReader[GenericRecord](dataFile, reader)
val datum = dataFileReader.next()
val writer = new SpecificDatumWriter[GenericRecord](schemaObj)
val out = new ByteArrayOutputStream()
val encoder : BinaryEncoder= EncoderFactory.get().binaryEncoder(out, null)
writer.write(datum,encoder)
encoder.flush()
out.close()
out.toByteArray()
}
Since there would we multiple events per kafka topic, we need to add header to avro messages for unit testing.
How to add headers in avro file and produce kakfa messages ?

Spark dataframes need their own column for Kafka headers. They must exist in a specific format of Array[(String, Array[Byte])]. Avro doesn't particularly matter;your shown function returns a byte array, so add that to a row/column of the dataframe you wish to write to Kafka.
If you have an existing Avro file you want to produce to Kafka, use Spark's existing from_avro function

Related

Spark 3.2.0 Structured Streaming save data to Kafka with Confluent Schema Registry

Is there some easy way how to save a spark structured streaming dataframe into kafka with Confluent Schema registry? Spark version is 3.2.0, Scala 2.12
I managed to read data from Kafka with Confluent schema registry with a bit of an ugly code:
val schemaRegistryClient = new CachedSchemaRegistryClient(schemaRegistry, 128)
val kafkaAvroDeserializer = new AvroDeserializer(schemaRegistryClient)
val deserializer = kafkaAvroDeserializer
}
class AvroDeserializer extends AbstractKafkaAvroDeserializer {
def this(client: SchemaRegistryClient) {
this()
this.schemaRegistry = client
}
override def deserialize(bytes: Array[Byte]): String = {
val genericRecord = super.deserialize(bytes).asInstanceOf[GenericRecord]
genericRecord.toString
}
}
spark.udf.register("deserialize", (bytes: Array[Byte]) =>
DeserializerWrapper.deserializer.deserialize(bytes))```
Now I would like to write the data to another Kafka topic - is there a simple way?
You'd need to use similarly ugly code that uses a serializer UDF over a Struct column (or primitive type).
There's libraries that can help with making it less ugly - https://github.com/AbsaOSS/ABRiS

write into kafka topic using spark and scala

I am reading data from Kafka topic and write back the data received into another Kafka topic.
Below is my code ,
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
import org.apache.kafka.clients.producer.{Kafka Producer, ProducerRecord}
import org.apache.spark.sql.ForeachWriter
//loading data from kafka
val data = spark.readStream.format("kafka")
.option("kafka.bootstrap.servers", "*******:9092")
.option("subscribe", "PARAMTABLE")
.option("startingOffsets", "latest")
.load()
//Extracting value from Json
val schema = new StructType().add("PARAM_INSTANCE_ID",IntegerType).add("ENTITY_ID",IntegerType).add("PARAM_NAME",StringType).add("VALUE",StringType)
val df1 = data.selectExpr("CAST(value AS STRING)")
val dataDF = df1.select(from_json(col("value"), schema).as("data")).select("data.*")
//Insert into another Kafka topic
val topic = "SparkParamValues"
val brokers = "********:9092"
val writer = new KafkaSink(topic, brokers)
val query = dataDF.writeStream
.foreach(writer)
.outputMode("update")
.start().awaitTermination()
I am getting the below error,
<Console>:47:error :not found: type KafkaSink
val writer = new KafkaSink(topic, brokers)
I am very new to spark, Someone suggest how to resolve this or verify the above code whether it is correct. Thanks in advance .
In spark structured streaming, You can write to Kafka topic after reading from another topic using existing DataStreamWriter for Kafka or you can create your own sink by extending ForeachWriter class.
Without using custom sink:
You can use below code to write a dataframe to kafka. Assuming df as the dataframe generated by reading from kafka topic.
Here dataframe should have atleast one column with name as value. If you have multiple columns you should merge them into one column and name it as value. If key column is not specified then key will be marked as null in destination topic.
df.select("key", "value")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "<topicName>")
.start()
.awaitTermination()
Using custom sink:
If you want to implement your own Kafka sink you need create a class by extending ForeachWriter. You need override some methods and pass the object of this class to foreach() method.
// By using Anonymous class to extend ForeachWriter
df.writeStream.foreach(new ForeachWriter[Row] {
// If you are writing Dataset[String] then new ForeachWriter[String]
def open(partitionId: Long, version: Long): Boolean = {
// open connection
}
def process(record: String) = {
// write rows to connection
}
def close(errorOrNull: Throwable): Unit = {
// close the connection
}
}).start()
You can check this databricks notebook for the implemented code (Scroll down and check the code under Kafka Sink heading). I think you are referring to this page only. To solve the issue you need to make sure that KafkaSink class is available to your spark code. You can bring both spark code file and class file in same package. If you are running on spark-shell paste the KafkaSink class before pasting spark code.
Read structured streaming kafka integration guide to explore more.

Spark Dataframe write to kafka topic in avro format?

I have a Dataframe in Spark that looks like
eventDF
Sno|UserID|TypeExp
1|JAS123|MOVIE
2|ASP123|GAMES
3|JAS123|CLOTHING
4|DPS123|MOVIE
5|DPS123|CLOTHING
6|ASP123|MEDICAL
7|JAS123|OTH
8|POQ133|MEDICAL
.......
10000|DPS123|OTH
I need to write it to Kafka topic in Avro format
currently i am able to write in Kafka as JSON using following code
val kafkaUserDF: DataFrame = eventDF.select(to_json(struct(eventDF.columns.map(column):_*)).alias("value"))
kafkaUserDF.selectExpr("CAST(value AS STRING)").write.format("kafka")
.option("kafka.bootstrap.servers", "Host:port")
.option("topic", "eventdf")
.save()
Now I want to write this in Avro format to Kafka topic
Spark >= 2.4:
You can use to_avro function from spark-avro library.
import org.apache.spark.sql.avro._
eventDF.select(
to_avro(struct(eventDF.columns.map(column):_*)).alias("value")
)
Spark < 2.4
You have to do it the same way:
Create a function which writes serialized Avro record to ByteArrayOutputStream and return the result. A naive implementation (this supports only flat objects) could be similar to (adopted from Kafka Avro Scala Example by Sushil Kumar Singh)
import org.apache.spark.sql.Row
def encode(schema: org.apache.avro.Schema)(row: Row): Array[Byte] = {
val gr: GenericRecord = new GenericData.Record(schema)
row.schema.fieldNames.foreach(name => gr.put(name, row.getAs(name)))
val writer = new SpecificDatumWriter[GenericRecord](schema)
val out = new ByteArrayOutputStream()
val encoder: BinaryEncoder = EncoderFactory.get().binaryEncoder(out, null)
writer.write(gr, encoder)
encoder.flush()
out.close()
out.toByteArray()
}
Convert it to udf:
import org.apache.spark.sql.functions.udf
val schema: org.apache.avro.Schema
val encodeUDF = udf(encode(schema) _)
Use it as drop in replacement for to_json
eventDF.select(
encodeUDF(struct(eventDF.columns.map(column):_*)).alias("value")
)

Hbase insert are very slow when kafka avro records are converted to Json

I am using Kafka 10 and receiving records in it from DB2 CDC. Kafka 10 uses Confluent Schema Registry to store the DB2 table schema and sends the records as Avro Array[Byte]. I want to store these records into Hbase (lets say Raw Hbase) and then run some transformation over those new records(like dropping columns, aggregation etc) using Hive and store the transformed records again into Hbase (lets say conformed Hbase). I tried 2 approaches and both are giving me some kind of issues. The records are big in length with ~500 columns(although only 10% of columns are req.) and each record is of size ~10kb.
1) I tried deserializing the records into Array[Byte] and then use the streamBulkPut method to insert it into Hbase.
Deserializer code:
def toRecord(buffer: Array[Byte]): Array[Byte] = {
var schemaRegistry: SchemaRegistryClient = null
schemaRegistry= new CachedSchemaRegistryClient(url, 10)
val bb = ByteBuffer.wrap(buffer)
bb.get() // consume MAGIC_BYTE
val schemaId = bb.getInt // consume schemaId //println(schemaId.toString)
val schema = schemaRegistry.getByID(schemaId) // consult the Schema Registry //println(schema)
val reader = new GenericDatumReader[GenericRecord](schema)
val decoder = DecoderFactory.get().binaryDecoder(buffer, bb.position(), bb.remaining(), null)
val writer = new GenericDatumWriter[GenericRecord](schema)
val baos = new ByteArrayOutputStream
val jsonEncoder = EncoderFactory.get.jsonEncoder(schema, baos)
writer.write( reader.read(null, decoder), jsonEncoder) //reader.read(null, decoder): returns Generic record
jsonEncoder.flush
baos.toByteArray
}
HBase bulkPut code:
val messages = KafkaUtils.createDirectStream[Object,Array[Byte],KafkaAvroDecoder,DefaultDecoder](ssc, kafkaParams, topicSet)
val hconf = HBaseConfiguration.create()
val hbaseContext = new HBaseContext(ssc.sparkContext, hconf)
val tableName = "your_table"
var rowKeyArray: Array[String] = null
hbaseContext.streamBulkPut(messages,TableName.valueOf(tableName),putFunction)
def putFunction(avroRecord:Tuple2[Object,Array[Byte]]):Put = {
implicit val formats = DefaultFormats
val recordKey = getKeyString(parse(avroRecord._1.toString.mkString).extract[Map[String,String]].values.mkString)
var put = new Put(Bytes.toBytes(recordKey))
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("row"), AvroDeserializer.toRecord(avroRecord._2))
put
}
def getKeyString(keystr:String):String = {
(Math.abs(keystr map (_.hashCode) reduceLeft( 31 * _ + _) ) % 10 + 48).toChar + "_" + keystr.trim
}
Now this method works but the inserts are painfully slow. I am getting a throughput of ~5k records per minute. The plan was once the records are in Raw Hbase I will use Hive to read and explode the json to run the transformation.
2) Instead of re-serializing the records while storing into Raw Hbase I thought of doing it while loading from Raw->Conformed Hbase (I can manage the slowness here as the data will be already with me i.e. out of kafka). So I tried storing Avro records as it is into Hbase and it ran very fast, I was able to insert 1.5 Million records in 2 mins. Below is code:
hbaseContext.streamBulkPut(messages,TableName.valueOf(tableName),putFunction)
def putFunction(avroRecord:Tuple2[Object,Array[Byte]]):Put = {
implicit val formats = DefaultFormats
val recordKey = parse(avroRecord._1.toString.mkString).extract[Map[String,String]]
var put = new Put(Bytes.toBytes(getKeyString(recordKey.values.mkString)))
put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("row"), avroRecord._2)
put
}
The problem with this approach is Hive is not able to read Avro records from Hbase and I cannot filter the records/run any logic on it.
I would appreciate any kind of help or resource that I can follow to improve the performance. Any approach would work for me if its corresponding issue is solved. Thanks

How to write spark streaming DF to Kafka topic

I am using Spark Streaming to process data between two Kafka queues but I can not seem to find a good way to write on Kafka from Spark. I have tried this:
input.foreachRDD(rdd =>
rdd.foreachPartition(partition =>
partition.foreach {
case x: String => {
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
println(x)
val producer = new KafkaProducer[String, String](props)
val message = new ProducerRecord[String, String]("output", null, x)
producer.send(message)
}
}
)
)
and it works as intended but instancing a new KafkaProducer for every message is clearly unfeasible in a real context and I'm trying to work around it.
I would like to keep a reference to a single instance for every process and access it when I need to send a message. How can I write to Kafka from Spark Streaming?
Yes, unfortunately Spark (1.x, 2.x) doesn't make it straight-forward how to write to Kafka in an efficient manner.
I'd suggest the following approach:
Use (and re-use) one KafkaProducer instance per executor process/JVM.
Here's the high-level setup for this approach:
First, you must "wrap" Kafka's KafkaProducer because, as you mentioned, it is not serializable. Wrapping it allows you to "ship" it to the executors. The key idea here is to use a lazy val so that you delay instantiating the producer until its first use, which is effectively a workaround so that you don't need to worry about KafkaProducer not being serializable.
You "ship" the wrapped producer to each executor by using a broadcast variable.
Within your actual processing logic, you access the wrapped producer through the broadcast variable, and use it to write processing results back to Kafka.
The code snippets below work with Spark Streaming as of Spark 2.0.
Step 1: Wrapping KafkaProducer
import java.util.concurrent.Future
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}
class MySparkKafkaProducer[K, V](createProducer: () => KafkaProducer[K, V]) extends Serializable {
/* This is the key idea that allows us to work around running into
NotSerializableExceptions. */
lazy val producer = createProducer()
def send(topic: String, key: K, value: V): Future[RecordMetadata] =
producer.send(new ProducerRecord[K, V](topic, key, value))
def send(topic: String, value: V): Future[RecordMetadata] =
producer.send(new ProducerRecord[K, V](topic, value))
}
object MySparkKafkaProducer {
import scala.collection.JavaConversions._
def apply[K, V](config: Map[String, Object]): MySparkKafkaProducer[K, V] = {
val createProducerFunc = () => {
val producer = new KafkaProducer[K, V](config)
sys.addShutdownHook {
// Ensure that, on executor JVM shutdown, the Kafka producer sends
// any buffered messages to Kafka before shutting down.
producer.close()
}
producer
}
new MySparkKafkaProducer(createProducerFunc)
}
def apply[K, V](config: java.util.Properties): MySparkKafkaProducer[K, V] = apply(config.toMap)
}
Step 2: Use a broadcast variable to give each executor its own wrapped KafkaProducer instance
import org.apache.kafka.clients.producer.ProducerConfig
val ssc: StreamingContext = {
val sparkConf = new SparkConf().setAppName("spark-streaming-kafka-example").setMaster("local[2]")
new StreamingContext(sparkConf, Seconds(1))
}
ssc.checkpoint("checkpoint-directory")
val kafkaProducer: Broadcast[MySparkKafkaProducer[Array[Byte], String]] = {
val kafkaProducerConfig = {
val p = new Properties()
p.setProperty("bootstrap.servers", "broker1:9092")
p.setProperty("key.serializer", classOf[ByteArraySerializer].getName)
p.setProperty("value.serializer", classOf[StringSerializer].getName)
p
}
ssc.sparkContext.broadcast(MySparkKafkaProducer[Array[Byte], String](kafkaProducerConfig))
}
Step 3: Write from Spark Streaming to Kafka, re-using the same wrapped KafkaProducer instance (for each executor)
import java.util.concurrent.Future
import org.apache.kafka.clients.producer.RecordMetadata
val stream: DStream[String] = ???
stream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val metadata: Stream[Future[RecordMetadata]] = partitionOfRecords.map { record =>
kafkaProducer.value.send("my-output-topic", record)
}.toStream
metadata.foreach { metadata => metadata.get() }
}
}
Hope this helps.
My first advice would be to try to create a new instance in foreachPartition and measure if that is fast enough for your needs (instantiating heavy objects in foreachPartition is what the official documentation suggests).
Another option is to use an object pool as illustrated in this example:
https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/PooledKafkaProducerAppFactory.scala
I however found it hard to implement when using checkpointing.
Another version that is working well for me is a factory as described in the following blog post, you just have to check if it provides enough parallelism for your needs (check the comments section):
http://allegro.tech/2015/08/spark-kafka-integration.html
With Spark >= 2.2
Both read and write operations are possible on Kafka using Structured Streaming API
Build stream from Kafka topic
// Subscribe to a topic and read messages from the earliest to latest offsets
val ds= spark
.readStream // use `read` for batch, like DataFrame
.format("kafka")
.option("kafka.bootstrap.servers", "brokerhost1:port1,brokerhost2:port2")
.option("subscribe", "source-topic1")
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
.load()
Read the key and value and apply the schema for both, for simplicity we are making converting both of them to String type.
val dsStruc = ds.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
Since dsStruc have the schema, it accepts all SQL kind operations like filter, agg, select ..etc on it.
Write stream to Kafka topic
dsStruc
.writeStream // use `write` for batch, like DataFrame
.format("kafka")
.option("kafka.bootstrap.servers", "brokerhost1:port1,brokerhost2:port2")
.option("topic", "target-topic1")
.start()
More configuration for Kafka integration to read or write
Key artifacts to add in the application
"org.apache.spark" % "spark-core_2.11" % 2.2.0,
"org.apache.spark" % "spark-streaming_2.11" % 2.2.0,
"org.apache.spark" % "spark-sql-kafka-0-10_2.11" % 2.2.0,
There is a Streaming Kafka Writer maintained by Cloudera (actually spun off from a Spark JIRA [1]). It basically creates a producer per partition, which amortizes the time spent to create 'heavy' objects over a (hopefully large) collection of elements.
The Writer can be found here: https://github.com/cloudera/spark-kafka-writer
I was having the same issue and found this post.
The author solves the problem by creating 1 producer per executor. Instead of sending the producer itself, he sends only a “recipe” how to create a producer in an executor by broadcasting it.
val kafkaSink = sparkContext.broadcast(KafkaSink(conf))
He uses a wrapper that lazily creates the producer:
class KafkaSink(createProducer: () => KafkaProducer[String, String]) extends Serializable {
lazy val producer = createProducer()
def send(topic: String, value: String): Unit = producer.send(new ProducerRecord(topic, value))
}
object KafkaSink {
def apply(config: Map[String, Object]): KafkaSink = {
val f = () => {
val producer = new KafkaProducer[String, String](config)
sys.addShutdownHook {
producer.close()
}
producer
}
new KafkaSink(f)
}
}
The wrapper is serializable because the Kafka producer is initialized just before first use on an executor. The driver keeps the reference to the wrapper and the wrapper sends the messages using each executor's producer:
dstream.foreachRDD { rdd =>
rdd.foreach { message =>
kafkaSink.value.send("topicName", message)
}
}
Why is it infeasible? Fundamentally each partition of each RDD is going to run independently (and may well run on a different cluster node), so you have to redo the connection (and any synchronization) at the start of each partition's task. If the overhead of that is too high then you should increase the batch size in your StreamingContext until it becomes acceptable (obv. there's a latency cost to doing this).
(If you're not handling thousands of messages in each partition, are you sure you need spark-streaming at all? Would you do better with a standalone application?)
This might be what you want to do. You basically create one producer for each partition of records.
input.foreachRDD(rdd =>
rdd.foreachPartition(
partitionOfRecords =>
{
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String,String](props)
partitionOfRecords.foreach
{
case x:String=>{
println(x)
val message=new ProducerRecord[String, String]("output",null,x)
producer.send(message)
}
}
})
)
Hope that helps
With Spark < 2.2
Since there is no direct way of writing the messages to Kafka from Spark Streaming
Create a KafkaSinkWritter
import java.util.Properties
import org.apache.kafka.clients.producer._
import org.apache.spark.sql.ForeachWriter
class KafkaSink(topic:String, servers:String) extends ForeachWriter[(String, String)] {
val kafkaProperties = new Properties()
kafkaProperties.put("bootstrap.servers", servers)
kafkaProperties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
kafkaProperties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val results = new scala.collection.mutable.HashMap[String, String]
var producer: KafkaProducer[String, String] = _
def open(partitionId: Long,version: Long): Boolean = {
producer = new KafkaProducer(kafkaProperties)
true
}
def process(value: (String, String)): Unit = {
producer.send(new ProducerRecord(topic, value._1 + ":" + value._2))
}
def close(errorOrNull: Throwable): Unit = {
producer.close()
}
}
Write messages using SinkWriter
val topic = "<topic2>"
val brokers = "<server:ip>"
val writer = new KafkaSink(topic, brokers)
val query =
streamingSelectDF
.writeStream
.foreach(writer)
.outputMode("update")
.trigger(ProcessingTime("25 seconds"))
.start()
Reference link