Related
I have 6 datasets each containing 10000 entries.
I want to plot their CDFs for comparison.
In MATLAB I am using the following code:
figure()
ksdensity(dataset1,'Support','positive','Function','cdf',...
'NumPoints',5)
xlabel('Error')
ylabel('CDF')
But I am not sure, is it the right way or wrong?
How can I do that?
I am getting the following figure.
Update:
This has been made even easier with cdfplot().
% MATLAB R2019a
% Example Data
X = wblrnd(2,3,50000,1);
Y = wblrnd(3,2,50000,1);
Z = wblrnd(2.5,2.5,50000,1);
Data = [X Y Z];
figure, hold on
for k = 1:size(Data,2)
h(k) = cdfplot(Data(:,k));
end
legend('show')
It looks like you've got the result you want except for the legend and markers. If you'd like more control of the plotting features, I'd suggest obtaining the necessary elements to plot from ksdensity using [f,xi] = ksdensity(x) then plotting separately.
% MATLAB R2019a
% Example Data
X = wblrnd(2,3,50000,1);
Y = wblrnd(3,2,50000,1);
Z = wblrnd(2.5,2.5,50000,1);
Data = [X Y Z];
NumPointCDF = 5; % Number of points to estimate CDF with
figure, hold on
for ii = 1:size(Data,2) % for each column of Data
[fii, xii] = ksdensity(Data(:,ii),'Support','positive','Function','cdf',...
'NumPoints',NumPointsCDF);
p(ii) = plot(xii,fii,'LineWidth',1.1,'Marker','.','MarkerSize',12);
end
legend('X','Y','Z')
Alternatively, you could just plot each first,
figure, hold on
for ii = 1:size(Data,2) % for each column of Data
[fii, xii] = ksdensity(Data(:,ii),'Support','positive','Function','cdf',...
'NumPoints',NumPointsCDF);
p(ii) = plot(xii,fii);
end
and then change the properties of each line later with p(1).foo (see here).
For example, one at a time: p(1).Marker = 's' % square
Or all at once:
% Update all properties using the object
for ii = 1:size(Data,2)
p(ii).Marker = '.'; % Adjust specific properties of p(ii) as needed
p(ii).LineWidth = 1.2;
end
Reference:
Graphics Object Properties
Access Property Values
I'm trying to fill an area between two curves with respect to a function which depends on the values of the curves.
Here is the code of what I've managed to do so far
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
N=[n_vec,fliplr(n_vec)];
X=[x_vec,fliplr(y_vec)];
figure(1)
subplot(2,1,1)
hold on
plot(n_vec,x_vec,n_vec,y_vec)
hp = patch(N,X,'b')
plot([n_vec(i) n_vec(i)],[x_vec(i),y_vec(i)],'linewidth',5)
xlabel('n'); ylabel('x')
subplot(2,1,2)
xx = linspace(y_vec(i),x_vec(i),100);
plot(xx,cc(xx,y_vec(i),x_vec(i)))
xlabel('x'); ylabel('c(x)')
This code produces the following graph
The color code which I've added represent the color coding that each line (along the y axis at a point on the x axis) from the area between the two curves should be.
Overall, the entire area should be filled with a gradient color which depends on the values of the curves.
I've assisted the following previous questions but could not resolve a solution
MATLAB fill area between lines
Patch circle by a color gradient
Filling between two curves, according to a colormap given by a function MATLAB
NOTE: there is no importance to the functional form of the curves, I would prefer an answer which refers to two general arrays which consist the curves.
The surf plot method
The same as the scatter plot method, i.e. generate a point grid.
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px = linspace(min(n_vec), max(n_vec), resolution(1));
py = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px, py);
Generate a logical array indicating whether the points are inside the polygon, but no need to extract the points:
in = inpolygon(px, py, N, X);
Generate Z. The value of Z indicates the color to use for the surface plot. Hence, it is generated using the your function cc.
pz = 1./(1+(exp(-py_)/(exp(-y_vec(i))-exp(-x_vec(i)))));
pz = repmat(pz',1,resolution(2));
Set Z values for points outside the area of interest to NaN so MATLAB won't plot them.
pz(~in) = nan;
Generate a bounded colourmap (delete if you want to use full colour range)
% generate colormap
c = jet(100);
[s,l] = bounds(pz,'all');
s = round(s*100);
l = round(l*100);
if s ~= 0
c(1:s,:) = [];
end
if l ~= 100
c(l:100,:) = [];
end
Finally, plot.
figure;
colormap(jet)
surf(px,py,pz,'edgecolor','none');
view(2) % x-y view
Feel free to turn the image arround to see how it looks like in the Z-dimention - beautiful :)
Full code to test:
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
% generate grid
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px_ = linspace(min(n_vec), max(n_vec), resolution(1));
py_ = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px_, py_);
% extract points
in = inpolygon(px, py, N, X);
% generate z
pz = 1./(1+(exp(-py_)/(exp(-y_vec(i))-exp(-x_vec(i)))));
pz = repmat(pz',1,resolution(2));
pz(~in) = nan;
% generate colormap
c = jet(100);
[s,l] = bounds(pz,'all');
s = round(s*100);
l = round(l*100);
if s ~= 0
c(1:s,:) = [];
end
if l ~= 100
c(l:100,:) = [];
end
% plot
figure;
colormap(c)
surf(px,py,pz,'edgecolor','none');
view(2)
You can use imagesc and meshgrids. See comments in the code to understand what's going on.
Downsample your data
% your initial upper and lower boundaries
n_vec_long = linspace(2,10,1000000);
f_ub_vec_long = linspace(2, 10, length(n_vec_long));
f_lb_vec_long = abs(sin(n_vec_long));
% downsample
n_vec = linspace(n_vec_long(1), n_vec_long(end), 1000); % for example, only 1000 points
% get upper and lower boundary values for n_vec
f_ub_vec = interp1(n_vec_long, f_ub_vec_long, n_vec);
f_lb_vec = interp1(n_vec_long, f_lb_vec_long, n_vec);
% x_vec for the color function
x_vec = 0:0.01:10;
Plot the data
% create a 2D matrix with N and X position
[N, X] = meshgrid(n_vec, x_vec);
% evaluate the upper and lower boundary functions at n_vec
% can be any function at n you want (not tested for crossing boundaries though...)
f_ub_vec = linspace(2, 10, length(n_vec));
f_lb_vec = abs(sin(n_vec));
% make these row vectors into matrices, to create a boolean mask
F_UB = repmat(f_ub_vec, [size(N, 1) 1]);
F_LB = repmat(f_lb_vec, [size(N, 1) 1]);
% create a mask based on the upper and lower boundary functions
mask = true(size(N));
mask(X > F_UB | X < F_LB) = false;
% create data matrix
Z = NaN(size(N));
% create function that evaluates the color profile for each defined value
% in the vectors with the lower and upper bounds
zc = #(X, ub, lb) 1 ./ (1 + (exp(-X) ./ (exp(-ub) - exp(-lb))));
CData = zc(X, f_lb_vec, f_ub_vec); % create the c(x) at all X
% put the CData in Z, but only between the lower and upper bound.
Z(mask) = CData(mask);
% normalize Z along 1st dim
Z = normalize(Z, 1, 'range'); % get all values between 0 and 1 for colorbar
% draw a figure!
figure(1); clf;
ax = axes; % create some axes
sc = imagesc(ax, n_vec, x_vec, Z); % plot the data
ax.YDir = 'normal' % set the YDir to normal again, imagesc reverses it by default;
xlabel('n')
ylabel('x')
This already looks kinda like what you want, but let's get rid of the blue area outside the boundaries. This can be done by creating an 'alpha mask', i.e. set the alpha value for all pixels outside the previously defined mask to 0:
figure(2); clf;
ax = axes; % create some axes
hold on;
sc = imagesc(ax, n_vec, x_vec, Z); % plot the data
ax.YDir = 'normal' % set the YDir to normal again, imagesc reverses it by default;
% set a colormap
colormap(flip(hsv(100)))
% set alpha for points outside mask
Calpha = ones(size(N));
Calpha(~mask) = 0;
sc.AlphaData = Calpha;
% plot the other lines
plot(n_vec, f_ub_vec, 'k', n_vec, f_lb_vec, 'k' ,'linewidth', 1)
% set axis limits
xlim([min(n_vec), max(n_vec)])
ylim([min(x_vec), max(x_vec)])
there is no importance to the functional form of the curves, I would prefer an answer which refers to two general arrays which consist the curves.
It is difficult to achieve this using patch.
However, you may use scatter plots to "fill" the area with coloured dots. Alternatively, and probably better, use surf plot and generate z coordinates using your cc function (See my seperate solution).
The scatter plot method
First, make a grid of points (resolution 500*500) inside the rectangular space bounding the two curves.
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px = linspace(min(n_vec), max(n_vec), resolution(1));
py = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px, py);
figure;
scatter(px(:), py(:), 1, 'r');
The not-interesting figure of the point grid:
Next, extract the points inside the polygon defined by the two curves.
in = inpolygon(px, py, N, X);
px = px(in);
py = py(in);
hold on;
scatter(px, py, 1, 'k');
Black points are inside the area:
Finally, create color and plot the nice looking gradient colour figure.
% create color for the points
cid = 1./(1+(exp(-py)/(exp(-y_vec(i))-exp(-x_vec(i)))));
c = jet(101);
c = c(round(cid*100)+1,:); % +1 to avoid zero indexing
% plot
figure;
scatter(px,py,16,c,'filled','s'); % use size 16, filled square markers.
Note that you may need a fairly dense grid of points to make sure the white background won't show up. You may also change the point size to a bigger value (won't impact performance).
Of cause, you may use patch to replace scatter but you will need to work out the vertices and face ids, then you may patch each faces separately with patch('Faces',F,'Vertices',V). Using patch this way may impact performance.
Complete code to test:
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
% generate point grid
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px_ = linspace(min(n_vec), max(n_vec), resolution(1));
py_ = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px_, py_);
% extract points
in = inpolygon(px, py, N, X);
px = px(in);
py = py(in);
% generate color
cid = 1./(1+(exp(-py)/(exp(-y_vec(i))-exp(-x_vec(i)))));
c = jet(101);
c = c(round(cid*100)+1,:); % +1 to avoid zero indexing
% plot
figure;
scatter(px,py,16,c,'filled','s');
I have created some MatLab code that plots a plane wave using two different expressions that give the same plane wave. The first expression is in Cartesian coordinates and works fine. However, the second expression is in polar coordinates and when I calculate the plane wave in this case, the plot is distorted. Both plots should look the same. So what am I doing wrong in transforming to/from polar coordinates?
function Plot_Plane_wave()
clc
clear all
close all
%% Step 0. Input paramaters and derived parameters.
alpha = 0*pi/4; % angle of incidence
k = 1; % wavenumber
wavelength = 2*pi/k; % wavelength
%% Step 1. Define various equivalent versions of the incident wave.
f_u_inc_1 = #(alpha,x,y) exp(1i*k*(x*cos(alpha)+y*sin(alpha)));
f_u_inc_2 = #(alpha,r,theta) exp(1i*k*r*cos(theta-alpha));
%% Step 2. Evaluate the incident wave on a grid.
% Grid for field
gridMax = 10;
gridN = 2^3;
g1 = linspace(-gridMax, gridMax, gridN);
g2 = g1;
[x,y] = meshgrid(g1, g2);
[theta,r] = cart2pol(x,y);
u_inc_1 = f_u_inc_1(alpha,x,y);
u_inc_2 = 0*x;
for ir=1:gridN
rVal = r(ir);
for itheta=1:gridN
thetaVal = theta(itheta);
u_inc_2(ir,itheta) = f_u_inc_2(alpha,rVal,thetaVal);
end
end
%% Step 3. Plot the incident wave.
figure(1);
subplot(2,2,1)
imagesc(g1(1,:), g1(1,:), real(u_inc_1));
hGCA = gca; set(hGCA, 'YDir', 'normal');
subplot(2,2,2)
imagesc(g1(1,:), g1(1,:), real(u_inc_2));
hGCA = gca; set(hGCA, 'YDir', 'normal');
end
Your mistake is that your loop is only going through the first gridN values of r and theta. Instead you want to step through the indices of ix and iy and pull out the rVal and thetaVal of the matrices r and theta.
You can change your loop to
for ix=1:gridN
for iy=1:gridN
rVal = r(ix,iy); % Was equivalent to r(ix) outside inner loop
thetaVal = theta(ix,iy); % Was equivalent to theta(iy)
u_inc_2(ix,iy) = f_u_inc_2(alpha,rVal,thetaVal);
end
end
which gives the expected graphs.
Alternatively you can simplify your code by feeding matrices in to your inline functions. To do this you would have to use an elementwise product .* instead of a matrix multiplication * in f_u_inc_2:
alpha = 0*pi/4;
k = 1;
wavelength = 2*pi/k;
f_1 = #(alpha,x,y) exp(1i*k*(x*cos(alpha)+y*sin(alpha)));
f_2 = #(alpha,r,theta) exp(1i*k*r.*cos(theta-alpha));
% Change v
f_old = #(alpha,r,theta) exp(1i*k*r *cos(theta-alpha));
gridMax = 10;
gridN = 2^3;
[x,y] = meshgrid(linspace(-gridMax, gridMax, gridN));
[theta,r] = cart2pol(x,y);
subplot(1,3,1)
contourf(x,y,real(f_1(alpha,x,y)));
title 'Cartesian'
subplot(1,3,2)
contourf(x,y,real(f_2(alpha,r,theta)));
title 'Polar'
subplot(1,3,3)
contourf(x,y,real(f_old(alpha,r,theta)));
title 'Wrong'
I am trying to outline all peaks in an image. The brightest lines are the peaks. I am using Matlab. This is what I have so far....
Any help will be greatly appreciated. Here is the image.
a = imread('duneLiDARs.png');
%b = imregionalmax(a);
%a = rgb2gray(a);
c = edge(a,'Sobel');
b = edge(a,'log',.0006);
d = edge(a,'log');
c= imfuse(a,d);
d= d-b;
subplot(2,2,1), imshow(a)
subplot(2,2,2), imshow(b)
subplot(2,2,3), imshow(c)
subplot(2,2,4), imshow(d)
%imshow(b);
%c = imadd(a,b);
%imshow(b);
you need to define what do you consider as peaks - what is the desired output for your image.
however, there are some general 2D peaks finding function, the following code uses FEX's extrema2:
% load image and remove extreme noise
im = medfilt2( im2double(imread('dune.png')));
% find peaks using extrema2
[XMAX,IMAX,XMIN,IMIN] = extrema2(im);
% eliminate peaks under minimum threshold
underThresh = XMAX < 0.15;
IMAX(underThresh) = [];
XMAX(underThresh) = [];
% plotting
subplot(121);
surf(im,'EdgeColor','none');
hold on;
[y,x] = ind2sub(size(im),IMAX);
scatter3(x,y,XMAX,'r','filled');
axis square
subplot(122);
imshow(im,[]);
hold on;
scatter(x,y,'r','filled');
I'm doing Gaussian processes and I calculated a regression per year from a given matrix where each row represents a year , so the code is:
M1 = MainMatrix; %This is the given Matrix
ker =#(x,y) exp(-1013*(x-y)'*(x-y));
[ns, ms] = size(M1);
for N = 1:ns
x = M1(N,:);
C = zeros(ms,ms);
for i = 1:ms
for j = 1:ms
C(i,j)= ker(x(i),x(j));
end
end
u = randn(ms,1);
[A,S, B] = svd(C);
z = A*sqrt(S)*u; % z = A S^.5 u
And I wanna plotting each regression in a Graph 3D as the below:
I know that plot is a ribbon, but I have not idea how can I do that
The desired plot can be generated without the use of ribbon. Just use a surf-plot for all the prices and a fill3-plot for the plane at z=0. The boundaries of the plane are calculated from the actual limits of the figure. Therefore we need to set the limits before plotting the plane. Then just some adjustments are needed to generate almost the same appearance.
Here is the code:
% generate some data
days = (1:100)';
price = days*[0.18,-0.08,0.07,-0.10,0.12,-0.08,0.05];
price = price + 0.5*randn(size(price));
years = 2002+(1:size(price,2));
% prepare plot
width = 0.6;
X = ones(size(price,1),1)*0.5;
X = [-X,X]*width;
figure; hold on;
% plot all 'ribbons'
for i = 1:size(price,2)
h = surf([days,days],X+years(i),[price(:,i),price(:,i)]);
set(h,'MeshStyle','column');
end
% set axis limits
set(gca,'ZLim',[-20,20]);
% plot plane at z=0
limx = get(gca,'XLim');
limy = get(gca,'YLim');
fill3(reshape([limx;limx],1,[]),[flip(limy),limy],zeros(1,4),'g','FaceAlpha',0.2)
% set labels
xlabel('Day of trading')
ylabel('Year')
zlabel('Normalized Price')
% tweak appearance
set(gca,'YTick',years);
set(gca,'YDir','reverse');
view([-38,50])
colormap jet;
grid on;
%box on;
This is the result:
That's a ribbon plot with an additional surface at y=0 which can be drawn with fill3