PySpark Joining on Dates When Some Don't Exist - pyspark

I have two datasets I want to join. DF1 contains a row for each user and for each date. DF2 only contains some users and some dates.
DF1
User_ID
Date
1
1/1/22
1
1/2/22
1
1/3/22
2
1/1/22
2
1/2/22
2
1/3/22
and DF2
User_ID
Transaction_Date
1
1/1/22
1
1/3/22
I'm looking to join these two so as to keep every date for every user and have a null transaction date where one doesn't exist. Ideally, I'd then forward fill transaction date per user so that the end result of this join would be
User_ID
Date
Transaction_Date
1
1/1/22
1/1/22
1
1/2/22
1/1/22
1
1/3/22
1/3/22
2
1/1/22
null
2
1/2/22
null
2
1/3/22
null
I've tried to join a few different ways including
df1 = df1.join(df2, on=[(df1.User_ID==df2.User_ID) & ((df1.Date==df2.Transaction_Date) | (df2.Transaction_Date.isNull()))
Unfortunately, everything I've tried will drop user2, who doesn't have a transaction, and will also drop all of the dates that don't align.

The idea is to use outer join instead of normal inner join. You can try this:
df1 = df1\
.join(df2, (df1.User_ID==df2.User_ID) & (df1.Date == df2.Transaction_Date), how='outer')\
.select([df1.User_ID, df1.Date, df2.Transaction_Date])\
.sort(df1.User_ID.asc(), df1.Date.asc())
df1.show()
Output:
Hope this help.

Related

How to Shorten Execution Time for A View

I have 3 tables, a user table, an admin table, and a cust table. Both admin and cust tables are foreign keyed to the user_account table. Basically, every user has a user record, and the type of user they are is determined by if they have a record in the admin or the cust table.
user admin cust
user_id user_id | admin_id user_id | cust_id
--------- ---------|---------- ---------|---------
1 1 | a 2 | dd
2 4 | b 3 | ff
3
4
Then I have a login_history table that records the user_id and login timestamp every time a user logs into the app
login_history
user_id | login_on
---------|---------------------
1 | 2022-01-01 13:22:43
1 | 2022-01-02 16:16:27
3 | 2022-01-05 21:17:52
2 | 2022-01-11 11:12:26
3 | 2022-01-12 03:34:47
I would like to create a view that would contain all dates for the first day of each week in the year starting from jan 1st, and a count column that contains the count of unique admin users that logged in that week and a count of unique cust users that logged in that week. So the resulting view should contain the following 53 records, one for each week.
login_counts_view
week_start_date | admin_count | cust_count
-----------------|-------------|------------
2022-01-01 | 1 | 1
2022-01-08 | 0 | 2
2022-01-15 | 0 | 0
.
.
.
2022-12-31 | 0 | 0
Note that the first week (2022-01-01) only has 1 count for admin_count even though the admin with user_id 1 logged in twice that week.
Below is the current query I have for the view. However, the tables are pretty large and it takes over 10 seconds to retrieve all records from the view, mainly because of the left joined date comparisons.
CREATE VIEW login_counts_view AS
SELECT
week_start_dates.week_start_date::text AS week_start_date,
count(distinct a.user_id) AS admin_count,
count(distinct c.user_id) AS cust_count
FROM (
SELECT
to_char(i::date, 'YYYY-MM-DD') AS week_start_date
FROM
generate_series(date_trunc('year', NOW()), to_char(NOW(), 'YYYY-12-31')::date, '1 week') i
) week_start_dates
LEFT JOIN login_history l ON l.login_on::date BETWEEN week_start_dates.week_start_date::date AND (week_start_dates.week_start_date::date + INTERVAL '6 day')::date
LEFT JOIN admin a ON a.user_id = l.user_id
LEFT JOIN cust c ON c.user_id = l.user_id
GROUP BY week_start_date;
Does anyone have any tips as to how to make this query execute more efficiently?
Idea
Compute the pseudo-week of each login date: partition the year into 7-day slices and number them consecutively. The pseudo-week of a given date would be the ordinal number of the slice it falls into.
Then operate the joins on integers representing the pseudo-weeks instead of date values and comparisons.
Implementation
A view to implement this follows:
CREATE VIEW login_counts_view_fast AS
WITH RECURSIVE Numbers(i) AS ( SELECT 0 UNION ALL SELECT i + 1 FROM Numbers WHERE i < 52 )
SELECT CAST ( date_trunc('year', NOW()) AS DATE) + 7 * n.i week_start_date
, count(distinct lw.admin_id) admin_count
, count(distinct lw.cust_id) cust_count
FROM (
SELECT i FROM Numbers
) n
LEFT JOIN (
SELECT admin_id
, cust_id
, base
, pit
, pit-base delta
, (pit-base) / (3600 * 24 * 7) week
FROM (
SELECT a.user_id admin_id
, c.user_id cust_id
, CAST ( EXTRACT ( EPOCH FROM l.login_on ) AS INTEGER ) pit
, CAST ( EXTRACT ( EPOCH FROM date_trunc('year', NOW()) ) AS INTEGER ) base
FROM login_history l
LEFT JOIN admin a ON a.user_id = l.user_id
LEFT JOIN cust c ON c.user_id = l.user_id
) le
) lw
ON lw.week = n.i
GROUP BY n.i
;
Some remarks:
The epoch values are the number of seconds elapsed since an absolute base datetime (specifically 1/1/1970 0h00).
CASTS are necessary to convert doubles to integers and timestamps to dates as mandated by the signatures of postgresql date functions and in order to enforce integer arithmetics.
The recursive subquery is a generator of consecutive integers. It could possibly be replaced by a generate_series call (untested)
Evaluation
See it in action in this db fiddle
The query plan indicates savings of 50-70% in execution time.

How to aggregate some dates and data which belong to into one row in pyspark?

I want to aggregate some dates (for example one month for each customer) and its data to one row in pyspark.
Example simply as the bellow table
Customer_Id
Date
Data
id1
2021-01-01
2
id1
2021-01-02
3
id1
2021-01-03
4
I want to change it into
Customer_Id
Date
col1
col2
col3
id1
[2021-01-01 - 2021-01-03]
2
3
4
#matin you can try below code to replicate the output
from pyspark.sql.functions import *
schema = ["Customer_Id","Date","Data"]
data =[["id1", "2021-01-01", 2],["id1","2021-01-02", 3],["id1","2021-01-03", 4]]
df = spark.createDataFrame(data,schema)
df2 = df.groupBy(["Customer_Id"]).agg(collect_list("Date").alias("list_date"),collect_list("data").alias("list_data")
)
df3= df2.withColumn("col1",df2.list_data[0]).withColumn("col2",df2.list_data[1]).withColumn("col3",df2.list_data[2]).drop("list_data")
df3.show(truncate=False)
df3.printSchema()
let me know if you need further modification.

Select dates missing data in a range

I have a postgres table test_table that looks like this:
date | test_hour
------------+-----------
2000-01-01 | 1
2000-01-01 | 2
2000-01-01 | 3
2000-01-02 | 1
2000-01-02 | 2
2000-01-02 | 3
2000-01-02 | 4
2000-01-03 | 1
2000-01-03 | 2
I need to select all the dates which don't have test_hour = 1, 2, and 3, so it should return
date
------------
2000-01-03
Here is what I have tried:
SELECT date FROM test_table WHERE test_hour NOT IN (SELECT generate_series(1,3));
But that only returns dates that have extra hours beyond 1, 2, 3
You can use aggregation and conditional HAVING clauses, like so:
SELECT mydate
FROM mytable
GROUP BY mydate
HAVING
MAX(CASE WHEN test_hour = 1 THEN 1 END) != 1
OR MAX(CASE WHEN test_hour = 2 THEN 1 END) != 1
OR MAX(CASE WHEN test_hour = 3 THEN 1 END) != 1
Another possibility would be to join it against the series (or another subquery containing the hours) and do a [distinct] count on the hours aggregatet per date:
select date from tst
inner join (select generate_series(1,3) "hour") hours on hours.hour = tst.hour
group by tst.date
having count(distinct tst.hour) < 3;
or
select date from tst
where hour in (select generate_series(1,3))
group by date
having count(distinct tst.hour) < 3;
[You don't need the distinct if date/hour combinations in Your table are unique]
A solution using set difference, giving you exactly the rows that are missing:
(SELECT DISTINCT
date, all_hour
FROM test_table
CROSS JOIN generate_series(1,3) all_hour)
EXCEPT
(TABLE test_table)
And a solution using an array aggregate and the array contains operator:
SELECT date
FROM test_table
GROUP BY date
HAVING NOT array_agg(test_hour) #> ARRAY(SELECT generate_series(1,3))
(online demos)

How can 'brand new, never before seen' IDs be counted per month in redshift?

A fair amount of material is available detailing methods utilising dense_rank() and the like to count distinct somethings per month, however, I've been unable to find anything that allows a count of distinct per month which also removes/discounts any id's that have been seen in prior month groups.
The data can be imagined like so:
id (int8 type) | observed time (timestamp utc)
------------------
1 | 2017-01-01
2 | 2017-01-02
1 | 2017-01-02
1 | 2017-02-02
2 | 2017-02-03
3 | 2017-02-04
1 | 2017-03-01
3 | 2017-03-01
4 | 2017-03-01
5 | 2017-03-02
The process of the count can be seen as:
1: in 2017-01 we saw devices 1 and 2 so the count is 2
2: in 2017-02 we saw devices 1, 2 and 3. We know already about devices 1 and 2, but not 3, so the count is 1
3: in 2017-03 we saw devices 1, 3, 4 and 5. We already know about 1 and 3, but not 4 or 5, so the count is 2.
with the desired output being something like:
observed time | count of new id
--------------------------
2017-01 | 2
2017-02 | 1
2017-03 | 2
Explicitly, I am looking to have a new table, with an aggregated month per row, with a count of how many new ids occur within that month that have not been seen at all before.
The IRL case allows devices to be seen more than once in a month, but this shouldn't impact the count. It also uses integer for storage (both positive and negative) of the id, and time periods will be to the second in true timestamps. The size of the data set is also significant.
My initial attempt is along the lines of:
WITH records_months AS (
SELECT *,
date_trunc('month', observed_time) AS month_group
FROM my_table
WHERE observed_time > '2017-01-01')
id_months AS (
SELECT DISTINCT
month_group,
id
FROM records_months
GROUP BY month_group, id)
SELECT *
FROM id-months
However, I'm stuck on the next part i.e counting the number of new ID that were not seen in prior months. I believe the solution might be a window function, but I'm having trouble working out which or how.
First thing I thought of. The idea is to
(innermost query) calculate the earliest month that each id was seen,
(next level up) join that back to the main my_table dataset, and then
(outer query) count distinct ids by month after nulling out the already-seen ids.
I tested it out and got the desired result set. Joining the earliest month back to the original table seemed like the most natural thing to do (vs. a window function). Hopefully this is performant enough for your Redshift!
select observed_month,
-- Null out the id if the observed_month that we're grouping by
-- is NOT the earliest month that the id was seen.
-- Then count distinct id
count(distinct(case when observed_month != earliest_month then null else id end)) as num_new_ids
from (
select t.id,
date_trunc('month', t.observed_time) as observed_month,
earliest.earliest_month
from my_table t
join (
-- What's the earliest month an id was seen?
select id,
date_trunc('month', min(observed_time)) as earliest_month
from my_table
group by 1
) earliest
on t.id = earliest.id
)
group by 1
order by 1;

Postgres aggregate sum conditional on row comparison

So, I have data that looks something like this
User_Object | filesize | created_date | deleted_date
row 1 | 40 | May 10 | Aug 20
row 2 | 10 | June 3 | Null
row 3 | 20 | Nov 8 | Null
I'm building statistics to record user data usage to graph based on time based datapoints. However, I'm having difficulty developing a query to take the sum for each row of all queries before it, but only for the rows that existed at the time of that row's creation. Before taking this step to incorporate deleted values, I had a simple naive query like this:
SELECT User_Object.id, User_Object.created, SUM(filesize) OVER (ORDER BY User_Object.created) AS sum_data_used
FROM User_Object
JOIN user ON User_Object.user_id = user.id
WHERE user.id = $1
However, I want to alter this somehow so that there's a conditional for the the window function to only get the sum of any row created before this User Object when that row doesn't have a deleted date also before this User Object.
This incorrect syntax illustrates what I want to do:
SELECT User_Object.id, User_Object.created,
SUM(CASE WHEN NOT window_function_row.deleted
OR window_function_row.deleted > User_Object.created
THEN filesize ELSE 0)
OVER (ORDER BY User_Object.created) AS sum_data_used
FROM User_Object
JOIN user ON User_Object.user_id = user.id
WHERE user.id = $1
When this function runs on the data that I have, it should output something like
id | created | sum_data_used|
1 | May 10 | 40
2 | June 3 | 50
3 | Nov 8 | 30
Something along these lines may work for you:
SELECT a.user_id
,MIN(a.created_date) AS created_date
,SUM(b.filesize) AS sum_data_used
FROM user_object a
JOIN user_object b ON (b.user_id <= a.user_id
AND COALESCE(b.deleted_date, a.created_date) >= a.created_date)
GROUP BY a.user_id
ORDER BY a.user_id
For each row, self-join, match id lower or equal, and with date overlap. It will be expensive because each row needs to look through the entire table to calculate the files size result. There is no cumulative operation taking place here. But I'm not sure there is a way that.
Example table definition:
create table user_object(user_id int, filesize int, created_date date, deleted_date date);
Data:
1;40;2016-05-10;2016-08-29
2;10;2016-06-03;<NULL>
3;20;2016-11-08;<NULL>
Result:
1;2016-05-10;40
2;2016-06-03;50
3;2016-11-08;30